Startseite Tight sets in finite classical polar spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tight sets in finite classical polar spaces

  • Anamari Nakić und Leo Storme EMAIL logo
Veröffentlicht/Copyright: 16. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We show that every i-tight set in the Hermitian variety H(2r + 1, q) is a union of pairwise disjoint (2r + 1)-dimensional Baer subgeometries PG(2r+1,q) and generators of H(2r + 1, q), if q ≥ 81 is an odd square and i < (q2/3 − 1)/2. We also show that an i-tight set in the symplectic polar space W(2r + 1, q) is a union of pairwise disjoint generators of W(2r + 1, q), pairs of disjoint r-spaces {Δ, Δ}, and (2r + 1)-dimensional Baer subgeometries. For W(2r + 1, q) with r even, pairs of disjoint r-spaces {Δ, Δ} cannot occur. The (2r + 1)-dimensional Baer subgeometries in the i-tight set of W(2r + 1, q) are invariant under the symplectic polarity ⊥ of W(2r + 1, q) or they arise in pairs of disjoint Baer subgeometries corresponding to each other under ⊥. This improves previous results where i<q5/8/2+1 was assumed. Generalizing known techniques and using recent results on blocking sets and minihypers, we present an alternative proof of this result and consequently improve the upper bound on i to (q2/3 − 1)/2. We also apply our results on tight sets to improve a known result on maximal partial spreads in W(2r + 1, q).

MSC 2010: 05B25; 51E20

Communicated by: G. Korchmáros


Funding statement: Anamari Nakić is supported in part by an STSM grant from the COST project Random network coding and designs over GF(q) (COST IC-1104) and in part by the Croatian Science Foundation under the project 1637

Acknowledgements

The authors thank the referee for the many suggestions which improved the article. We especially wish to thank the referee for the proof of Lemma 2.16 and for giving us the example of two disjoint Baer subgeometries PG(3, 3) in PG(3, 9) which correspond to each other under a symplectic polarity W(3, 9) (Theorem 2.26), thus providing us with an example of a (2q+2) -tight set in W(2r + 1, q) = W(3, 9) which is the union of two disjoint Baer subgeometries PG(2r+1,q)=PG(3,3).

References

[1] J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and m-ovoids of finite polar spaces. J. Combin. Theory Ser. A114 (2007), 1293–1314. MR2353124 Zbl 1124.5100310.1016/j.jcta.2007.01.009Suche in Google Scholar

[2] L. Beukemann, K. Metsch, Small tight sets of hyperbolic quadrics. Des. Codes Cryptogr. 68 (2013), 11–24. MR3046332 Zbl 1277.5100910.1007/s10623-012-9676-4Suche in Google Scholar

[3] A. Blokhuis, On the size of a blocking set in PG(2, p). Combinatorica14 (1994), 111–114. MR1273203 Zbl 0803.0501110.1007/BF01305953Suche in Google Scholar

[4] A. Blokhuis, Blocking sets in Desarguesian planes. In: Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., 133–155, János Bolyai Math. Soc., Budapest 1996. MR1395857 Zbl 0849.51005Suche in Google Scholar

[5] A. Blokhuis, L. Lovász, L. Storme, T. Szőnyi, On multiple blocking sets in Galois planes. Adv. Geom. 7 (2007), 39–53. MR2290638 Zbl 1123.5101210.1515/ADVGEOM.2007.003Suche in Google Scholar

[6] A. Blokhuis, L. Storme, T. Szőnyi, Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. (2) 60 (1999), 321–332. MR1724814 Zbl 0940.5100710.1112/S0024610799007875Suche in Google Scholar

[7] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combin. Theory Ser. A1 (1966), 96–104. MR0197215 Zbl 0152.1810610.1016/S0021-9800(66)80007-8Suche in Google Scholar

[8] A. Bruen, Baer subplanes and blocking sets. Bull.Amer. Math. Soc. 76 (1970), 342–344. MR0251629 Zbl 0207.0260110.1090/S0002-9904-1970-12470-3Suche in Google Scholar

[9] A. A. Bruen, Intersection of Baer subgeometries. Arch. Math. (Basel)39 (1982), 285–288. MR682458 Zbl 0477.5100810.1007/BF01899537Suche in Google Scholar

[10] A. A. Bruen, J. W. P. Hirschfeld, Intersections in projective space. I. Combinatorics. Math. Z. 193 (1986), 215–225. MR856149 Zbl 0579.5101010.1007/BF01174331Suche in Google Scholar

[11] A. Cossidente, F. Pavese, On the geometry of unitary involutions. Finite Fields Appl. 36 (2015), 14–28. MR3396373 Zbl 1328.5100110.1016/j.ffa.2015.06.004Suche in Google Scholar

[12] J. De Beule, A. Gács, Complete arcs on the parabolic quadric Q(4, q). Finite Fields Appl. 14 (2008), 14–21. MR2381472 Zbl 1137.5100810.1016/j.ffa.2007.09.002Suche in Google Scholar

[13] J. De Beule, P. Govaerts, A. Hallez, L. Storme, Tight sets, weighted m-covers, weighted m-ovoids, and minihypers. Des. Codes Cryptogr. 50 (2009), 187–201. MR2469977 Zbl 1246.5100610.1007/s10623-008-9223-5Suche in Google Scholar

[14] J. De Beule, A. Klein, K. Metsch, L. Storme, Partial ovoids and partial spreads of classical finite polar spaces. Serdica Math. J. 34 (2008), 689–714. MR2489960 Zbl 1224.05071Suche in Google Scholar

[15] S. De Winter, K. Thas, Bounds on partial ovoids and spreads in classical generalized quadrangles. Innov. Incidence Geom. 11 (2010), 19–33. MR2795055 Zbl 1266.5100510.2140/iig.2010.11.19Suche in Google Scholar

[16] G. Donati, N. Durante, On the intersection of two subgeometries of PG(n, q). Des. Codes Cryptogr. 46 (2008), 261–267. MR2372839 Zbl 1185.5101010.1007/s10623-007-9143-9Suche in Google Scholar

[17] K. W. Drudge, Extremal sets in projective and polar spaces. PhD thesis, Univ. Western Ontario (1998). MR2698237Suche in Google Scholar

[18] V. Fack, S. L. Fancsali, L. Storme, G. Van de Voorde, J. Winne, Small weight codewords in the codes arising from Desarguesian projective planes. Des. Codes Cryptogr. 46 (2008), 25–43. MR2361839 Zbl 1182.9406210.1007/s10623-007-9126-xSuche in Google Scholar

[19] P. Govaerts, L. Storme, On a particular class of minihypers and its applications. II. Improvements for q square. J. Combin. Theory Ser. A97 (2002), 369–393. MR1883871 Zbl 1009.5100410.1006/jcta.2001.3219Suche in Google Scholar

[20] P. Govaerts, L. Storme, H. Van Maldeghem, On a particular class of minihypers and its applications. III. Applications. European J. Combin. 23 (2002), 659–672. MR1924787 Zbl 1022.5100510.1006/eujc.2002.0599Suche in Google Scholar

[21] A. Hallez, Linear codes and blocking structures in finite projective and polar spaces. PhD thesis, Ghent University (2010).Suche in Google Scholar

[22] N. Hamada, Characterization of minihypers in a finite projective geometry and its applications to error-correcting codes. Bull. Osaka Women’s Univ. 24 (1987), 1–24.Suche in Google Scholar

[23] N. Hamada, T. Helleseth, A characterization of some q-ary codes (q > (h − 1)2, h ≥3) meeting the Griesmer bound. Math. Japon. 38 (1993), 925–939. MR1240296 Zbl 0786.05016Suche in Google Scholar

[24] M. Lavrauw, L. Storme, G. Van de Voorde, On the code generated by the incidence matrix of points and k-spaces in PG(n, q) and its dual. Finite Fields Appl. 14 (2008), 1020–1038. MR2457544 Zbl 1153.5100610.1016/j.ffa.2008.06.002Suche in Google Scholar

[25] G. Lunardon, Linear k-blocking sets. Combinatorica21 (2001), 571–581. MR1863578 Zbl 0996.5100310.1007/s004930100013Suche in Google Scholar

[26] K. Metsch, L. Storme, Partial t-spreads in PG(2t + 1, q). Des. Codes Cryptogr. 18 (1999), 199–216. MR1738667 Zbl 0964.5100510.1023/A:1008305824113Suche in Google Scholar

[27] P. Polito, O. Polverino, On small blocking sets. Combinatorica18 (1998), 133–137. MR1645666 Zbl 0910.0501710.1007/PL00009807Suche in Google Scholar

[28] O. Polverino, Small minimal blocking sets and complete k-arcs in PG(2, p3). Discrete Math. 208/209 (1999), 469–476. MR1725553 Zbl 0941.5100810.1016/S0012-365X(99)00090-4Suche in Google Scholar

[29] L. Rédei, Lückenhafte Polynome über endlichen Körpern. Birkhäuser 1970. MR0294297 Zbl 0321.1202810.1007/978-3-0348-4006-4Suche in Google Scholar

[30] M. Sved, Baer subspaces in the n-dimensional projective space. In: Combinatorial mathematics, X (Adelaide, 1982), volume 1036 of Lecture Notes in Math., 375–391, Springer 1983. MR731594 Zbl 0527.5102110.1007/BFb0071531Suche in Google Scholar

[31] P. Sziklai, On small blocking sets and their linearity. J. Combin. Theory Ser. A115 (2008), 1167–1182. MR2450336 Zbl 1156.5100710.1016/j.jcta.2008.01.006Suche in Google Scholar

[32] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3 (1997), 187–202. MR1459823 Zbl 0912.5100410.1006/ffta.1996.0176Suche in Google Scholar

[33] T. Szönyi, Z. Weiner, Small blocking sets in higher dimensions. J. Combin. Theory Ser. A95 (2001), 88–101. MR1840479 Zbl 0983.5100610.1006/jcta.2000.3152Suche in Google Scholar

[34] Z. Weiner, Small point sets of PG(n, q) intersecting each k-space in 1 modulo q points. Innov. Incidence Geom. 1 (2005), 171–180. MR2213957 Zbl 1113.5100310.2140/iig.2005.1.171Suche in Google Scholar

Received: 2015-5-8
Accepted: 2015-12-15
Published Online: 2017-2-16
Published in Print: 2017-1-1

© 2017 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2016-0034/html?lang=de
Button zum nach oben scrollen