Startseite Real solutions to systems of polynomial equations and parameter continuation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Real solutions to systems of polynomial equations and parameter continuation

  • Zachary A. Griffin und Jonathan D. Hauenstein EMAIL logo
Veröffentlicht/Copyright: 3. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Given a parameterized family of polynomial equations, a fundamental question is to determine upper and lower bounds on the number of real solutions a member of this family can have and, if possible, compute where the bounds are sharp. A computational approach to this problem was developed by Dietmaier in 1998 who used a local linearization procedure to move in the parameter space to change the number of real solutions. He used this approach to show that there exists a Stewart-Gough platform that attains the maximum of forty real assembly modes. Due to the necessary ill-conditioning near the discriminant locus, we propose replacing the local linearization near the discriminant locus with a homotopy-based method derived from the method of gradient descent arising in optimization. This new hybrid approach is then used to develop a new result in real enumerative geometry.

Received: 2013-5-7
Published Online: 2015-4-3
Published in Print: 2015-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2015-0004/pdf
Button zum nach oben scrollen