Startseite An upper bound on the volume of the symmetric difference of a body and a congruent copy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An upper bound on the volume of the symmetric difference of a body and a congruent copy

  • D. Schymura EMAIL logo
Veröffentlicht/Copyright: 1. April 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let A be a bounded subset of ℝd for some d ≥ 2. We give an upper bound on the volume of the symmetric difference of A and ƒ(A) where f is a translation, a rotation, or the composition of both, a rigid motion.

We bound the volume of the symmetric difference of A and f(A) in terms of the (d - 1)- dimensional volume of the boundary of A and the maximal distance of a boundary point to its image under ƒ. The boundary is measured by the (d - 1)-dimensional Hausdorff measure, which matches the surface area for sufficiently nice sets. In the case of translations, our bound is sharp. In the case of rotations, we get a sharp bound under the assumption that the boundary is sufficiently nice.

The motivation to study these bounds comes from shape matching.

Published Online: 2014-4-1
Published in Print: 2014-3-1

©2014 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2013-0029/html?srsltid=AfmBOoqYIDf3zg743o5ii2NXp9T8h4GlklTmOkMckp6MU2e-Z_1KoN0g
Button zum nach oben scrollen