Startseite A note on indecomposable sets of finite perimeter
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A note on indecomposable sets of finite perimeter

  • Panu Lahti ORCID logo EMAIL logo
Veröffentlicht/Copyright: 22. Juli 2022

Abstract

Bonicatto, Pasqualetto and Rajala (2020) proved that a decomposition theorem for sets of finite perimeter into indecomposable sets, known to hold in Euclidean spaces, holds also in complete metric spaces equipped with a doubling measure, supporting a Poincaré inequality, and satisfying an isotropicity condition. We show that the last assumption can be removed.

MSC 2010: 30L99; 26B30; 46E36

Communicated by Zoltan Balogh


Acknowledgements

The author wishes to thank Tapio Rajala for discussions and for checking the manuscript, as well as two anonymous referees for providing helpful feedback.

References

[1] L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces, Set-Valued Var. Anal. 10 (2002), no. 2–3, 111–128. 10.1023/A:1016548402502Suche in Google Scholar

[2] L. Ambrosio, V. Caselles, S. Masnou and J.-M. Morel, Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc. (JEMS) 3 (2001), no. 1, 39–92. 10.1007/PL00011302Suche in Google Scholar

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon, New York, 2000. 10.1093/oso/9780198502456.001.0001Suche in Google Scholar

[4] L. Ambrosio, M. Miranda, Jr. and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of Variations: Topics From the Mathematical Heritage of E. De Giorgi, Quad. Mat. 14, Seconda Università degli Studi di Napoli, Caserta (2004), 1–45. Suche in Google Scholar

[5] A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, EMS Tracts Math 17, European Mathematical Society, Zürich, 2011. 10.4171/099Suche in Google Scholar

[6] P. Bonicatto, E. Pasqualetto and T. Rajala, Indecomposable sets of finite perimeter in doubling metric measure spaces, Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 63. 10.1007/s00526-020-1725-7Suche in Google Scholar

[7] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, New York, 1969. Suche in Google Scholar

[8] P. Hajłasz, Sobolev spaces on metric-measure spaces, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris 2002), Contemp. Math. 338, American Mathematical Society, Providence (2003), 173–218. 10.1090/conm/338/06074Suche in Google Scholar

[9] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. 10.1007/BF02392747Suche in Google Scholar

[10] J. Kinnunen, R. Korte, N. Shanmugalingam and H. Tuominen, Pointwise properties of functions of bounded variation in metric spaces, Rev. Mat. Complut. 27 (2014), no. 1, 41–67. 10.1007/s13163-013-0130-6Suche in Google Scholar

[11] P. Lahti, A new Federer-type characterization of sets of finite perimeter, Arch. Ration. Mech. Anal. 236 (2020), no. 2, 801–838. 10.1007/s00205-019-01483-5Suche in Google Scholar

[12] M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9) 82 (2003), no. 8, 975–1004. 10.1016/S0021-7824(03)00036-9Suche in Google Scholar

[13] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam. 16 (2000), no. 2, 243–279. 10.4171/RMI/275Suche in Google Scholar

Received: 2021-03-26
Revised: 2022-02-14
Accepted: 2022-06-13
Published Online: 2022-07-22
Published in Print: 2023-07-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2021-0029/html?lang=de
Button zum nach oben scrollen