Startseite Mathematik Prescribing Morse scalar curvatures: Critical points at infinity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Prescribing Morse scalar curvatures: Critical points at infinity

  • Martin Mayer EMAIL logo
Veröffentlicht/Copyright: 20. Januar 2022

Abstract

The problem of prescribing conformally the scalar curvature of a closed Riemannian manifold as a given Morse function reduces to solving an elliptic partial differential equation with critical Sobolev exponent. Two ways of attacking this problem consist in subcritical approximations or negative pseudogradient flows. We show under a mild nondegeneracy assumption the equivalence of both approaches with respect to zero weak limits, in particular a one-to-one correspondence of zero weak limit finite energy subcritical blow-up solutions, zero weak limit critical points at infinity of negative type and sets of critical points with negative Laplacian of the function to be prescribed.

MSC 2010: 58E05; 53C21; 35B40

Award Identifier / Grant number: E83C18000100006

Funding statement: M. Mayer has been supported by the Italian MIUR Department of Excellence grant CUP E83C18000100006.

  1. Communicated by: Guofang Wang

References

[1] A. Bahri, Critical points at infinity in the variational calculus, Séminaire sur les équations aux dérivées partielles, 1985–1986, École Polytechnique, Palaiseau (1986), 1–31, Exp. No. 21. 10.1007/BFb0100779Suche in Google Scholar

[2] A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser. 182, Longman Scientific & Technical, Harlow, 1989. Suche in Google Scholar

[3] A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 81 (1996), 323–466. 10.1215/S0012-7094-96-08116-8Suche in Google Scholar

[4] A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), no. 1, 106–172. 10.1016/0022-1236(91)90026-2Suche in Google Scholar

[5] M. Ben Ayed and M. O. Ahmedou, Multiplicity results for the prescribed scalar curvature on low spheres, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 4, 609–634. 10.2422/2036-2145.2008.4.02Suche in Google Scholar

[6] M. Ben Ayed, Y. Chen, H. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996), no. 3, 633–677. 10.1215/S0012-7094-96-08420-3Suche in Google Scholar

[7] M. Ben Ayed, H. Chtioui and M. Hammami, The scalar-curvature problem on higher-dimensional spheres, Duke Math. J. 93 (1998), no. 2, 379–424. 10.1215/S0012-7094-98-09313-9Suche in Google Scholar

[8] S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom. 69 (2005), no. 2, 217–278. 10.4310/jdg/1121449107Suche in Google Scholar

[9] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477. 10.1002/cpa.3160360405Suche in Google Scholar

[10] K.-C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser, Boston, 1993. 10.1007/978-1-4612-0385-8Suche in Google Scholar

[11] S.-Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on S 2 , Acta Math. 159 (1987), no. 3–4, 215–259. 10.1007/BF02392560Suche in Google Scholar

[12] J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N. S.) 17 (1987), no. 1, 37–91. 10.1090/S0273-0979-1987-15514-5Suche in Google Scholar

[13] Y. Li, Prescribing scalar curvature on S n and related problems. II. Existence and compactness, Comm. Pure Appl. Math. 49 (1996), no. 6, 541–597. 10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-ASuche in Google Scholar

[14] A. Malchiodi and M. Mayer, Prescribing Morse Scalar Curvatures: Pinching and Morse theory, preprint (2019), https://arxiv.org/abs/1909.03190; published in Comm. Pure Appl. Math, DOI 10.1002/cpa.22037. 10.1002/cpa.22037Suche in Google Scholar

[15] A. Malchiodi and M. Mayer, Prescribing Morse scalar curvatures: Subcritical blowing-up solutions, J. Differential Equations 268 (2020), no. 5, 2089–2124. 10.1016/j.jde.2019.09.019Suche in Google Scholar

[16] A. Malchiodi and M. Mayer, Prescribing Morse scalar curvatures: Blow-up analysis, Int. Math. Res. Not. IMRN 2021 (2021), no. 18, 14123–14203. 10.1093/imrn/rnaa021Suche in Google Scholar

[17] A. Malchiodi and M. Struwe, 𝑄-curvature flow on S 4 , J. Differential Geom. 73 (2006), no. 1, 1–44. 10.4310/jdg/1146680511Suche in Google Scholar

[18] M. Mayer, A scalar curvature flow in low dimensions, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Paper No. 24. 10.1007/s00526-017-1118-8Suche in Google Scholar

[19] M. Mayer, Prescribing scalar curvatures: non compactness versus critical points at infinity, Geom. Flows 4 (2019), no. 1, 51–82. 10.1515/geofl-2019-0004Suche in Google Scholar

[20] M. Mayer, Prescribing Morse scalar curvatures: Incompatibility of non existence, preprint (2021), https://arxiv.org/abs/2106.09294. Suche in Google Scholar

[21] M. Mayer and C. B. Ndiaye, Barycenter technique and the Riemann mapping problem of Cherrier–Escobar, J. Differential Geom. 107 (2017), no. 3, 519–560. 10.4310/jdg/1508551224Suche in Google Scholar

[22] O. Rey, The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1–52. 10.1016/0022-1236(90)90002-3Suche in Google Scholar

[23] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. 10.4310/jdg/1214439291Suche in Google Scholar

Received: 2019-01-23
Revised: 2021-06-29
Accepted: 2021-09-17
Published Online: 2022-01-20
Published in Print: 2022-04-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2019-0009/html
Button zum nach oben scrollen