Abstract
In this paper, starting from a non-convex and nonlocal 3D-variational model for the electric polarization in a ferroelectric material, and using an asymptotic process based on dimensional reduction, we analyze junction phenomena for two orthogonal joined ferroelectric thin films. We obtain three different 2D-variational models for joined thin films, depending on how the reduction happens. Indeed, a memory effect of the reduction process appears, and it depends on the competition of the relative thickness of the two films. The guide parameter is the limit of the ratio between these two small thickness.
Funding statement: The third author is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). He is also member of the Spanish project n. MTM2013-44883-P of MICINN. He wishes also to thank the Zhejiang University (Hangzhou, China), where he was visiting professor in 2015 and 2016 in the setting of project FP7-PEOPLE-2012-IRSES: EDWTGT, and where he had helpful discussions on ferroelectric materials.
References
[1] R. Alicandro and C. Leone, 3D-2D asymptotic analysis for micromagnetic thin films, ESAIM Control Optim. Calc. Var. 6 (2001), 489–498. 10.1051/cocv:2001119Search in Google Scholar
[2] F. Alouges and S. Labbé, Convergence of a ferromagnetic film model, C. R. Math. Acad. Sci. Paris 344 (2007), no. 2, 77–82. 10.1016/j.crma.2006.11.031Search in Google Scholar
[3] H. Ammari, L. Halpern and K. Hamdache, Asymptotic behavior of thin ferromagnetic films, Asymptot. Anal. 24 (2000), 277–294. Search in Google Scholar
[4] M. Baía and E. Zappale, A note on the 3D-2D dimensional reduction of a micromagnetic thin film with nonhomogeneous profile, Appl. Anal. 86 (2007), no. 5, 555–575. 10.1080/00036810701233942Search in Google Scholar
[5] J. Ballato and M. C. Gupta, The Handbook of Photonics, 2nd ed., CRC Press, Boca Raton, 2006. 10.1201/9780849330957Search in Google Scholar
[6] A. Braides, Γ-Convergence for Beginners, Oxford Lecture Ser. Math. Appl. 22, Oxford University Press, Oxford, 2002. 10.1093/acprof:oso/9780198507840.001.0001Search in Google Scholar
[7] L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations. Representation, Relaxation, and Homogenization, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 125, Chapman & Hall/CRC, Boca Raton, 2002. 10.1201/9781420035582Search in Google Scholar
[8] G. Carbou, Thin layers in micromagnetism, Math. Models Methods Appl. Sci. 11 (2001), no. 9, 1529–1546. 10.1142/S0218202501001458Search in Google Scholar
[9] P. Chandra and P. B. Littlewood, A Landau primer for ferroelectrics, The Physics of Ferroelectrics: A Modern Perspective, Topics Appl. Phys. 105, Springer, Berlin (2007), 69–116. 10.1007/978-3-540-34591-6_3Search in Google Scholar
[10] P. G. Ciarlet and P. Destuynder, A justification of the two-dimensional linear plate model, J. Méc. Paris 18 (1979), no. 2, 315–344. Search in Google Scholar
[11] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal. 33 (1999), no. 3, 627–649. 10.1051/m2an:1999155Search in Google Scholar
[12] L. E. Cross and R. E. Newnham, History of ferroelectrics, Ceramics and Civilization. Volume III: High-Technology Ceramics-Past, Present, and Future, American Ceramic Society, Westerville (1987), 289–305, reprinted. Search in Google Scholar
[13] G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl. 8, Birkhäuser, Boston, 1993. 10.1007/978-1-4612-0327-8Search in Google Scholar
[14] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat. 58 (1975), 842–850. Search in Google Scholar
[15] U. De Maio, L. Faella and S. Soueid, Quasy-stationary ferromagnetic thin films in degenerated cases, Ric. Mat. 63 (2014), 225–237. 10.1007/s11587-014-0197-5Search in Google Scholar
[16] U. De Maio, L. Faella and S. Soueid, Junction of quasi-stationary ferromagnetic thin films, Asymptot. Anal. 94 (2015), no. 3–4, 211–240. 10.3233/ASY-151311Search in Google Scholar
[17] A. Desimone, R. V. Kohn, S. Muller and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002), no. 11, 1408–1460. 10.1002/cpa.3028Search in Google Scholar
[18]
A. Gaudiello and R. Hadiji,
Junction of one-dimensional minimization problems involving
[19]
A. Gaudiello and R. Hadiji,
Asymptotic analysis, in a thin multidomain, of minimizing maps with values in
[20] A. Gaudiello and R. Hadiji, Junction of ferromagnetic thin films, Calc. Var. Partial Differential Equations 39 (2010), no. 3, 593–619. 10.1007/s00526-010-0327-1Search in Google Scholar
[21] A. Gaudiello and R. Hadiji, Ferromagnetic thin multi-structures, J. Differential Equations 257 (2014), 1591–1622. 10.1016/j.jde.2014.05.015Search in Google Scholar
[22] A. Gaudiello and K. Hamdache, The polarization in a ferroelectric thin film: Local and nonlocal limit problems, ESAIM Control Optim. Calc. Var. 19 (2013), 657–667. 10.1051/cocv/2012026Search in Google Scholar
[23] A. Gaudiello and K. Hamdache, A reduced model for the polarization in a ferroelectric thin wire, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 6, 1883–1896. 10.1007/s00030-015-0348-8Search in Google Scholar
[24] A. Gaudiello, R. Monneau, J. Mossino, F. Murat and A. Sili, Junction of elastic plates and beams, ESAIM Control Optim. Calc. Var. 13 (2007), no. 3, 419–457. 10.1051/cocv:2007036Search in Google Scholar
[25] G. Gioia and R. D. James, Micromagnetism of very thin films, Proc. R. Soc. Lond. A 453 (1997), 213–223. 10.1098/rspa.1997.0013Search in Google Scholar
[26] R. Hadiji and K. Shirakawa, Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients, Commun. Pure Appl. Anal 9 (2010), no. 5, 1345–1361. 10.3934/cpaa.2010.9.1345Search in Google Scholar
[27] R. V. Kohn and V. V. Slastikov, Another thin-film limit of micromagnetics, Arch. Ration. Mech. Anal. 178 (2005), 227–245. 10.1007/s00205-005-0372-7Search in Google Scholar
[28] R. V. Kohn and V. V. Slastikov, Effective dynamics for ferromagnetic thin films: A rigorous justification, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2053, 143–154. 10.1098/rspa.2004.1342Search in Google Scholar
[29] H. Le Dret, Problèmes variationnels dans le multi-domaines: Modélisation des jonctions et applications, Rech. Appl. Math. 19, Masson, Paris, 1991. Search in Google Scholar
[30] T. Mitsui, I. Taksuzaki and E. Nakamura, An Introduction to the Physics of Ferroelectrics, Gordon & Breach, London, 1976. Search in Google Scholar
[31] A. Romano and E. S. Suhubi, Structure of Weis domain in ferroelectric crystals, Internat. J. Engrg. Sci. 30 (1992), 1715–1729. 10.1016/0020-7225(92)90090-4Search in Google Scholar
[32] Y. Su and C. M. Landis, Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning, J. Mech. Phys. Solids 55 (2007), 280–305. 10.1016/j.jmps.2006.07.006Search in Google Scholar
[33] W. Zhang and K. Bhattacharya, A computational model of ferroelectric domains. Part I. Model formulation and domain switching, Acta Mater. 53 (2005), 185–198. 10.1016/j.actamat.2004.09.016Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On the continuity of functionals defined on partitions
- Fin junction of ferroelectric thin films
- A class of shape optimization problems for some nonlocal operators
- Dichotomy of global capacity density in metric measure spaces
- Nonlinear diffusion in transparent media: The resolvent equation
Articles in the same Issue
- Frontmatter
- On the continuity of functionals defined on partitions
- Fin junction of ferroelectric thin films
- A class of shape optimization problems for some nonlocal operators
- Dichotomy of global capacity density in metric measure spaces
- Nonlinear diffusion in transparent media: The resolvent equation