Abstract
We consider the set of smooth zero degree maps
Funding source: Narodowe Centrum Nauki
Award Identifier / Grant number: 2012/07/B/ST1/03366
Funding statement: The work of both authors has been partially supported by the Narodowe Centrum Nauki grant no. 2012/07/B/ST1/03366.
References
[1] F. Almgren, W. Browder and E. H. Lieb, Co-area, liquid crystals, and minimal surfaces, Partial Differential Equations (Tianjin 1986), Lecture Notes in Math. 1306, Springer, Berlin (1988), 1–22. 10.1007/BFb0082921Suche in Google Scholar
[2] F. J. Almgren, Jr. and E. H. Lieb, Singularities of energy minimizing maps from the ball to the sphere: Examples, counterexamples, and bounds, Ann. of Math. (2) 128 (1988), no. 3, 483–530. 10.2307/1971434Suche in Google Scholar
[3] F. Bethuel, H. Brezis and J.-M. Coron, Relaxed energies for harmonic maps, Variational Methods (Paris 1988), Progr. Nonlinear Differential Equations Appl. 4, Birkhäuser, Boston (1990), 37–52. 10.1007/978-1-4757-1080-9_3Suche in Google Scholar
[4] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, Berlin, 1969. Suche in Google Scholar
[5] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics Math., Springer, Berlin, 2001. 10.1007/978-3-642-61798-0Suche in Google Scholar
[6] A. Granas and J. Dugundji, Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003. 10.1007/978-0-387-21593-8Suche in Google Scholar
[7]
R. Hardt and F.-H. Lin,
A remark on
[8] R. Hardt and F.-H. Lin, Stability of singularities of minimizing harmonic maps, J. Differential Geom. 29 (1989), no. 1, 113–123. 10.4310/jdg/1214442637Suche in Google Scholar
[9] T. Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995), no. 2, 197–226. 10.1007/BF02393305Suche in Google Scholar
[10] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), no. 2, 307–335. 10.4310/jdg/1214436923Suche in Google Scholar
[11] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), no. 2, 253–268. 10.4310/jdg/1214437663Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A necessary and sufficient condition for the continuity of local minima of parabolic variational integrals with linear growth
- A quantitative isoperimetric inequality on the sphere
- Global higher integrability for non-quadratic parabolic quasi-minimizers on metric measure spaces
- The Lavrentiev gap phenomenon for harmonic maps into spheres holds on a dense set of zero degree boundary data
Artikel in diesem Heft
- Frontmatter
- A necessary and sufficient condition for the continuity of local minima of parabolic variational integrals with linear growth
- A quantitative isoperimetric inequality on the sphere
- Global higher integrability for non-quadratic parabolic quasi-minimizers on metric measure spaces
- The Lavrentiev gap phenomenon for harmonic maps into spheres holds on a dense set of zero degree boundary data