Startseite A C1,α partial regularity result for integral functionals with p⁢(x)-growth condition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A C1,α partial regularity result for integral functionals with p(x)-growth condition

  • Flavia Giannetti EMAIL logo
Veröffentlicht/Copyright: 11. September 2015

Abstract

We establish C1,α partial regularity for the local minimizers of integral functionals of the type

(u;Ω):=Ω(1+|Du|2)p(x)2𝑑x,

where the gradient of the exponent function p()2 belongs to a suitable Orlicz–Zygmund class.

MSC 2010: 35B65; 35J50; 49J99

Communicated by Juha Kinnunen


References

[1] Acerbi E. and Fusco N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Ration. Mech. Anal. 99 (1987), 261–281. 10.1007/BF00284509Suche in Google Scholar

[2] Acerbi E. and Mingione G., Regularity results for a class of functionals with non standard growth, Arch. Ration. Mech. Anal. 156 (2001), 121–140. 10.1007/s002050100117Suche in Google Scholar

[3] Acerbi E. and Mingione G., Regularity results for a class of quasiconvex functionals with non standard growth, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 30 (2001), 311–339. Suche in Google Scholar

[4] Bögelein V., Duzaar F., Habermann J. and Scheven C., Partial Hölder continuity for discontinuous elliptic problems with VMO-coefficients, Proc. Lond. Math. Soc. (3) 103 (2011), no. 3, 371–404. 10.1112/plms/pdr009Suche in Google Scholar

[5] Breit D., De Maria B. and Passarelli di Napoli A., Regularity for non autonomous functionals with almost linear growth, Manuscripta Math. 136 (2011), no. 1–2, 83–114. 10.1007/s00229-011-0432-2Suche in Google Scholar

[6] Cianchi A., Interpolation of operators and the Sobolev embedding theorem in Orlicz spaces, Proceedings of the International Conference on Differential Equations (Lisboa 1995), World Scientific, Singapore (1998), 306–310. Suche in Google Scholar

[7] Coscia A. and Mingione G., Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Math. Acad. Sci. Paris 328 (1999), 363–368. 10.1016/S0764-4442(99)80226-2Suche in Google Scholar

[8] Cruz Uribe D. and Fiorenza A., Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Birkhäuser, Basel, 2013. 10.1007/978-3-0348-0548-3Suche in Google Scholar

[9] Cupini G., Fusco N. and Petti R., Hölder continuity of local minimizers, J. Math. Anal. Appl. 51 (2006), 355–425. 10.1006/jmaa.1999.6410Suche in Google Scholar

[10] De Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Unione Mat. Ital. 1 (1968), no. 4, 135–137. Suche in Google Scholar

[11] De Maria B. and Passarelli di Napoli A., Partial regularity for non autonomous functionals with non standard growth conditions, Calc. Var. Partial Differential Equations 38 (2010), no. 3–4, 417–439. 10.1007/s00526-009-0293-7Suche in Google Scholar

[12] De Maria B. and Passarelli di Napoli A., A new partial regularity for non autonomous convex integrals with non standard growth conditions, J. Differential Equations 250 (2011), 1363–1385. 10.1016/j.jde.2010.09.033Suche in Google Scholar

[13] Diening L., Hästö P. Harjulehto P. and Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Berlin, 2011. 10.1007/978-3-642-18363-8Suche in Google Scholar

[14] Eleuteri M., Hölder continuity result for a class of functionals with non standard growth, Boll. Unione Mat. Ital. Sez. B 7 (2004), no. 1, 129–157. Suche in Google Scholar

[15] Esposito L., Leonetti F. and Mingione G., Regularity results for minimizers of functionals with (p,q) growth, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 133–148. 10.1007/s000300050069Suche in Google Scholar

[16] Esposito L., Leonetti F. and Mingione G., Sharp regularity for functionals with (p,q) growth, J. Differential Equations 204 (2004), 5–55. 10.1016/j.jde.2003.11.007Suche in Google Scholar

[17] Fan X.-L. and Zhao D., On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446. 10.1006/jmaa.2000.7617Suche in Google Scholar

[18] Foss M. and Mingione G. R., Partial continuity for elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 471–503. 10.1016/j.anihpc.2007.02.003Suche in Google Scholar

[19] Fusco N. and Hutchinson J. E., C1,α partial of function minimizing quasiconvex integrals, Manuscripta Math. 54 (1985), 121–143. 10.1007/BF01171703Suche in Google Scholar

[20] Giannetti F. and Passarelli di Napoli A., Regularity results for a new class of functionals with non-standard growth conditions, J. Differential Equations 254 (2013), 1280–1305. 10.1016/j.jde.2012.10.011Suche in Google Scholar

[21] Giannetti F. and Passarelli di Napoli A., Higher differentiability of minimizers of variational integrals with variable exponents, Math. Z. 280 (2015), no. 3, 873–892. 10.1007/s00209-015-1453-4Suche in Google Scholar

[22] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud. 105, Princeton University Press, Princeton, 1983. 10.1515/9781400881628Suche in Google Scholar

[23] Giusti E., Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003. 10.1142/5002Suche in Google Scholar

[24] Habermann J., Partial regularity for minima of higher order functionals with p(x)-growth, Manuscripta Math. 126 (2008), no. 1, 1–40. 10.1007/s00229-007-0147-6Suche in Google Scholar

[25] Kováčik O. and Rákosník J., On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41 (1991), no. 116, 592–618. 10.21136/CMJ.1991.102493Suche in Google Scholar

[26] Manfredi J. J., Regularity for minima of functionals with p-growth, J. Differential Equations 76 (1988), 203–212. 10.1016/0022-0396(88)90070-8Suche in Google Scholar

[27] Marcellini P., Regularity of minimizers of integrals of the calculus of variations witn non-standard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267–284. 10.1007/BF00251503Suche in Google Scholar

[28] Mingione G., Regularity of minima: An invitation to the dark side of calculus of variations, Appl. Math. 51 (2006), no. 4, 355–425. 10.1007/s10778-006-0110-3Suche in Google Scholar

[29] Passarelli di Napoli A., A C1,α partial regularity result for non-autonomous convex integrals with discontinuous coefficients, NoDEA Nonlinear Differential Equations Appl. (2015), 10.1007/s00030-015-0324-3. 10.1007/s00030-015-0324-3Suche in Google Scholar

[30] Šverák V. and Yan X., A singular minimizer of a smooth strongly convex functional in three dimensions, Calc. Var. Partial Differential Equations 10 (2000), 213–221. 10.1007/s005260050151Suche in Google Scholar

[31] Šverák V. and Yan X., Non Lipschitz minimizers of smooth strongly convex variational integrals, Proc. Natl. Acad. Sci. USA 24 (2002), 15269–15276. 10.1073/pnas.222494699Suche in Google Scholar PubMed PubMed Central

[32] Žhikov V. V., On some variational problems, Russ. J. Math. Phys. 5 (1997), 105–116. Suche in Google Scholar

Received: 2015-3-16
Revised: 2015-7-17
Accepted: 2015-8-4
Published Online: 2015-9-11
Published in Print: 2016-10-1

© 2016 by De Gruyter

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2015-0011/html
Button zum nach oben scrollen