Abstract
This study established an RCS-Containment coupled model that integrates the reactor coolant system (RCS) and the containment system by using the TRACE code. The coupled model was used in both short-term and long-term loss of coolant accident (LOCA) analyses. Besides, the RELAP5/CONTAN model that only contains the containment system was also developed for comparison. For short-term analysis, three kinds of LOCA scenarios were investigated: the recirculation line break (RCLB), the main steam line break (MSLB), and the feedwater line break (FWLB). For long-term analysis, the dry-well and suppression pool temperature responses of the RCLB were studied. The analysis results of RELAP5/CONTAN and TRACE models are benchmarked with those of FSAR and RELAP5/GOTHIC models, and it appears that the results of the above four models are consistent in general trends.
Abstract
In dieser Studie wurde ein kombiniertes TRACE-Modell erstellt, das das Reaktorkühlsystem (RCS) und das Containment-System zusammenführt. Das gekoppelte Modell wurde sowohl für kurzfristige als auch für langfristige Kühlmittelverlust-Unfallanalysen (LOCA) verwendet. Daneben wurde zum Vergleich auch ein RELAP5/CONTAN-Modell nur für das Containment entwickelt. Für die Kurzzeitanalyse wurden drei Arten von LOCA-Szenarien untersucht: der Bruch der Rezirkulationsleitung (RCLB), der Frischdampfleitungsbruch (MSLB) und der Speisewasserleitungsbruch (FWLB). Für die Langzeitanalyse wurden die Temperaturrückwirkungen des RCLB auf das Drywell und das Suppressionsbecken untersucht. Die Analyseergebnisse der Modelle RELAP5/CONTAN und TRACE werden mit denen der Modelle FSAR und RELAP5/GOTHIC verglichen, und es zeigt sich, dass die Ergebnisse der oben genannten vier Modelle in den allgemeinen Trends übereinstimmen.
Nomenclature
- ADS
Automatic Depressurization System
- BWR
Boiling Water Reactor
- CS
Core Spray
- CSNPP
Chinshan Nuclear Power Plant
- DBA
Design Basis Accident
- ECCS
Emergency Core Cooling Systems
- FSAR
Final Safety Analysis Report
- FWLB
Feedwater Line Break
- HPCI
High-Pressure Coolant Injection System
- LOCA
Loss of Coolant Accident
- LPCI
Low-Pressure Coolant Injection System
- MSIV
Main Steam Isolation Valves
- MSL
Main Steam Lines
- MSLB
Main Steam Line Break
- NPSH
Net Positive Suction Head
- OLTP
Original Licensed Thermal Power
- PCT
Peak Cladding Temperature
- P/T
Pressure and Temperature
- RCIC
Reactor Core Isolation Cooling System
- RCLB
Recirculation Line Break
- RCS
Reactor Coolant System
- RHR
Residual Heat Removal
- RPV
Reactor Pressure Vessel
- SNAP
Symbolic Nuclear Analysis Package
- SRVs
Safety/Relief Valves
- TPC
Taiwan Power Company
- TRACE
TRAC/RELAP Advanced Computational Engine
- fi
interfacial unit volume force
- fwg
unit volume force between wall and gas mixture
- fwl
unit volume force between wall and liquid
- eg
gas mixture internal energy
- el
liquid internal energy

gravity vector

vapor enthalpy of the bulk vapor if the vapor is condensing or the vapor saturation enthalpy if the liquid is vaporizing
- P
total pressure
- qdg
power deposited directly to the gas mixture
- qdl
power deposited directly to the liquid
- qwg
heat-transfer rate per unit volume between wall and gas mixture
- qwl
heat-transfer rate per unit volume between wall and liquid
- qwsat
heat-transfer rate per unit volume between wall and saturation fluid
- t
time

gas mixture velocity vector
liquid velocity vector
- α
void fraction
- ρg
gas mixture density
- ρl
liquid density
- Γ
interfacial mass-transfer rate (positive from liquid to gas)
References
1 U.S. Code of Federal Regulation, Title 10, and Part 50.46: Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. USA, (2007)Suche in Google Scholar
2 U.S. NRC: Standard review plan for the review of safety analysis reports for nuclear power plants: LWR edition. (2007) NUREG-0800Suche in Google Scholar
3 Kral, P.: Advantages of complex and detailed modeling of RCS-containment-ECCS systems in single TH analysis. (2010)Suche in Google Scholar
4 Chen, C. Y.; Shih, C.,Wang, J. R.: The alternate mitigation strategies on the extreme event of the LOCA and the SBO with the TRACE Chinshan BWR4 model. Nuclear Engineering and Design 256 (2013) 332–340, DOI:10.1016/j.nucengdes.2012.08.02910.1016/j.nucengdes.2012.08.029Suche in Google Scholar
5 Nikitin, K.; Mueller, P.; Martin, J.; VanDoesburg, W.; Hiltbrand, D.: BWR-4 LOCA modeling with RELAP5. The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16) Chicago, IL, August 30-September 4, 2015, p. 2349–2361Suche in Google Scholar
6 Nikitin, K.; Mueller, P.; Martin, J.; Van Doesburg, W.; Hiltbrand, D.: BWR loss of coolant accident simulation by means of RELAP5. Nuclear Engineering and Design 309 (2016) 113–121, DOI:10.1016/j.nucengdes.2016.09.00810.1016/j.nucengdes.2016.09.008Suche in Google Scholar
7 Chen, Y. S.; Yuann, Y. R.; Lin, Y. P.; Dai, L. C.: Thermal-hydraulic analysis of Mark I containment of the Chinshan nuclear power plant with GOTHIC. The 8th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-8), Shanghai, China, October 10–14, 2010, N8P014Suche in Google Scholar
8 Chen, Y. S.: Yuann, Y. R.; Dai, L. C.; Lin, Y. P.: Pressure and temperature analyses using GOTHIC for Mark I containment of the Chinshan nuclear power plant. Nuclear Engineering and Design 241 (2011) 1548–155, DOI:10.1016/j.nucengdes.2011.02.00410.1016/j.nucengdes.2011.02.004Suche in Google Scholar
9 Yuann, Y. R.: Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant. Nuclear Engineering and Design 300 (2016) 403–411, DOI:10.1016/j.nucengdes.2016.02.01610.1016/j.nucengdes.2016.02.016Suche in Google Scholar
10 Auria, F. D.; Galassi, G. M.; Giannotti,W.; Petruzzi, A.; Moussavian, K.; Pierro, F.; Lo Nigro, A.; Muellner, N.: Qualification and application of coupled reactor cooling system and containment nodalisations. IAEA Technical Meeting: Progress in development and use of coupled codes for accident analysis, Vienna, November 26–28, 2003, p. 1–23Suche in Google Scholar
11 Kim, J.; Bang, Y.: Development of RCS-containment coupled analysis model and evaluation of LBLOCA for APR-1400. The 26th International Conference Nuclear Energy for New Europe (NENE 2017), Bled, Slovenia, September 11–14, 2017, p. 220.1–220.8Suche in Google Scholar
12 Ge, L.; Yang, Z.; Shan, J.; Li, H.; Liu, D.: Three-dimensional transient analysis of coupled RCS-containment integral system. Nuclear Engineering and Design 359 (2020) 110461, DOI:10.1016/j.nucengdes.2019.11046110.1016/j.nucengdes.2019.110461Suche in Google Scholar
13 U.S. NRC: TRACE V5.840 user’s manual Volume 1: Input specification. (2014)Suche in Google Scholar
14 U.S. NRC: TRACE V5.840 user’s manual Volume 2: Modeling guidelines. (2014)Suche in Google Scholar
15 Taiwan Power Company: Chinshan nuclear power station units 1 and 2 final safety analysis report. (2008)Suche in Google Scholar
16 AREVA NP Inc.: Chinshan unit 1 cycle 27 principal plant parameters. (2012)Suche in Google Scholar
17 Cohen, T. C.; Kumar, G. V.: Chinshan unit 1 startup test results final summary report. (1979)Suche in Google Scholar
18 Applied Programming Technology Inc.: Symbolic nuclear analysis package (SNAP) user’s manual. (2012)Suche in Google Scholar
19 Huang, J. J.; Chen, H. C.; Wang, J. R.; Liao, L. Y.; Lin, H. T.; Shih, C.: The load rejection transient analysis of Chinshan NPP (BWR/4) using TRACE/PARCS. The 22th International Conference on Nuclear Engineering (ICONE 2014) p. 30858, DOI:10.1115/ICONE22-3085810.1115/ICONE22-30858Suche in Google Scholar
20 Wang, J. R.; Lin, H. T.; Chen, H. C.; Shih, C.: The establishment and assessment of Chinshan (BWR/4) nuclear power plant. (2014) NUREG/IA-0445Suche in Google Scholar
21 U.S. NRC: TRACE V5.840 theory manual. (2013)Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Experimental investigation on pool boiling for downward facing heating with different concentrations of Al2O3 nanofluids
- 244Cm contributions to the alpha source term of CANDU reactors
- Methodology for integral analysis of ATWS for Kuosheng nuclear power station
- LOCA analysis of BWR-4/Mark-I nuclear power plant with TRACE
- Fuel integrity evaluation method for BWR-6 plant Kuosheng during ATWS events
- Uncertainty studies on hydrogen source term with MAAP5 code
- Dynamic fault tree analysis of auxiliary feedwater system in a pressurized water reactor
- Impact of control rod insertion during burnup on PWR fuel assembly isotopic composition
- Temperature adjusted cross section libraries used for criticality calculations
Artikel in diesem Heft
- Frontmatter
- Experimental investigation on pool boiling for downward facing heating with different concentrations of Al2O3 nanofluids
- 244Cm contributions to the alpha source term of CANDU reactors
- Methodology for integral analysis of ATWS for Kuosheng nuclear power station
- LOCA analysis of BWR-4/Mark-I nuclear power plant with TRACE
- Fuel integrity evaluation method for BWR-6 plant Kuosheng during ATWS events
- Uncertainty studies on hydrogen source term with MAAP5 code
- Dynamic fault tree analysis of auxiliary feedwater system in a pressurized water reactor
- Impact of control rod insertion during burnup on PWR fuel assembly isotopic composition
- Temperature adjusted cross section libraries used for criticality calculations