Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On a Type of Hyperbolic Variational–Hemivariational Inequalities
-
P. D. Panagiotopoulos
und G. Pop
Veröffentlicht/Copyright:
4. Juni 2010
Abstract
We consider a hyperbolic variational–hemivariational initial value problem on a vector valued functions space. Using a regularization procedure and a Barbu result we obtain an existence result for a problem independent on u′.
Key words and phrases.: Hyperbolic problem; generalized gradient of Clarke
Received: 1998-05-05
Revised: 1998-11-18
Published Online: 2010-06-04
Published in Print: 1999-June
© Heldermann Verlag
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Oscillation Criteria for a Class of Functional Parabolic Equations
- Singular Filters for the Radon Backprojection
- Chemical Attack in Free Boundary Domains
- On Minimax Inequality and Generalized Quasi–Variational Inequality in H-Spaces
- Covering Baire 1 Functions with Darboux Functions and the Cofinality of the Ideal of Meager Sets
- On a Type of Hyperbolic Variational–Hemivariational Inequalities
- A Coloring Result for the Plane
- Nonlinear Alternative: Application to an Integral Equation
- Multivariable Regular Variation of Functions and Measures
- Constrained Equilibrium Point of Maximal Monotone Operator Via Variational Inequality
Artikel in diesem Heft
- Oscillation Criteria for a Class of Functional Parabolic Equations
- Singular Filters for the Radon Backprojection
- Chemical Attack in Free Boundary Domains
- On Minimax Inequality and Generalized Quasi–Variational Inequality in H-Spaces
- Covering Baire 1 Functions with Darboux Functions and the Cofinality of the Ideal of Meager Sets
- On a Type of Hyperbolic Variational–Hemivariational Inequalities
- A Coloring Result for the Plane
- Nonlinear Alternative: Application to an Integral Equation
- Multivariable Regular Variation of Functions and Measures
- Constrained Equilibrium Point of Maximal Monotone Operator Via Variational Inequality