Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Chemical Attack in Free Boundary Domains
-
S. Clain
Veröffentlicht/Copyright:
4. Juni 2010
Abstract
This paper presents a mathematical model for a chemical process used to machine cristal as glass or silica. A short physical description is presented from which we draw the mathematical model. We obtain a coupled parabolic equations system on a free boundary domain with a non-linear condition on the boundary. The existence and the uniqueness is proved in the one-dimensional case.
Received: 1997-10-17
Revised: 1998-01-28
Published Online: 2010-06-04
Published in Print: 1999-June
© Heldermann Verlag
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Oscillation Criteria for a Class of Functional Parabolic Equations
- Singular Filters for the Radon Backprojection
- Chemical Attack in Free Boundary Domains
- On Minimax Inequality and Generalized Quasi–Variational Inequality in H-Spaces
- Covering Baire 1 Functions with Darboux Functions and the Cofinality of the Ideal of Meager Sets
- On a Type of Hyperbolic Variational–Hemivariational Inequalities
- A Coloring Result for the Plane
- Nonlinear Alternative: Application to an Integral Equation
- Multivariable Regular Variation of Functions and Measures
- Constrained Equilibrium Point of Maximal Monotone Operator Via Variational Inequality
Artikel in diesem Heft
- Oscillation Criteria for a Class of Functional Parabolic Equations
- Singular Filters for the Radon Backprojection
- Chemical Attack in Free Boundary Domains
- On Minimax Inequality and Generalized Quasi–Variational Inequality in H-Spaces
- Covering Baire 1 Functions with Darboux Functions and the Cofinality of the Ideal of Meager Sets
- On a Type of Hyperbolic Variational–Hemivariational Inequalities
- A Coloring Result for the Plane
- Nonlinear Alternative: Application to an Integral Equation
- Multivariable Regular Variation of Functions and Measures
- Constrained Equilibrium Point of Maximal Monotone Operator Via Variational Inequality