Factor Complexity of Infinite Words Associated with Non-Simple Parry Numbers
-
Karel Klouda
and Edita Pelantová
Abstract
The factor complexity of the infinite word uβ canonically associated with a non-simple Parry number β is studied. Our approach is based on the notion of special factors introduced by Berstel and Cassaigne. At first, we give a handy method for determining infinite left special branches; this method is applicable to a broad class of infinite words which are fixed points of a primitive substitution. In the second part of the article, we focus on infinite words uβ only. To complete the description of their special factors, we define and study (a, b)-maximal left special factors. This enables us to characterize non-simple Parry numbers β for which the word uβ has affine complexity.
© de Gruyter 2009
Articles in the same Issue
- Preface
- Symmetric CNS Trinomials
- On the β-Expansion of an Algebraic Number in an Algebraic Base β
- A Planar Integral Self-Affine Tile with Cantor Set Intersections with Its Neighbors
- Beta-Expansions with Negative Bases
- Convergence in Möbius Number Systems
- Factor Complexity of Infinite Words Associated with Non-Simple Parry Numbers
- On the Boundary of the Set of the Closure of Contractive Polynomials
- Christoffel Words and Markoff Triples
- Characterizations of Words with Many Periods
Articles in the same Issue
- Preface
- Symmetric CNS Trinomials
- On the β-Expansion of an Algebraic Number in an Algebraic Base β
- A Planar Integral Self-Affine Tile with Cantor Set Intersections with Its Neighbors
- Beta-Expansions with Negative Bases
- Convergence in Möbius Number Systems
- Factor Complexity of Infinite Words Associated with Non-Simple Parry Numbers
- On the Boundary of the Set of the Closure of Contractive Polynomials
- Christoffel Words and Markoff Triples
- Characterizations of Words with Many Periods