Home Time-domain 1H NMR characterization of the liquid phase in greenwood
Article
Licensed
Unlicensed Requires Authentication

Time-domain 1H NMR characterization of the liquid phase in greenwood

  • Nicole Labbé , Bernard De Jéso , Jean-Claude Lartigue , Gérard Daudé , Michel Pétraud and Max Ratier
Published/Copyright: May 3, 2006
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 60 Issue 3

Abstract

The time domain of 1H NMR spectroscopy allows straightforward editing of the T2 relaxation profiles in maritime pine wood. A new method from the Carr-Purcell-Meiboom-Gill sequence is proposed to measure the amount and distribution of water in wood, as well as the location of major dissolved organic materials. A general calibration model giving reliable and precise identification of these parameters is described. The method presented for editing T2 relaxation profiles (obtained by the Contin program) may be helpful in solving practical drying and gluing problems in the wood industry. It can be used for monitoring chemical modifications of wood fibers involved in the design of wood composite materials.

:

Corresponding author. Laboratoire de Chimie Organique et Organométallique, Université Bordeaux I, Talence, France

References

Araujo, C.D., MacKay, A.L., Hailey, J.R.T., Whittall, K.P., Le, H. (1992) Proton magnetic resonance techniques for characterization of water in wood: application to white spruce. Wood Sci. Technol.26:101–113.10.1007/BF00194466Search in Google Scholar

Araujo, C.D., MacKay, A.L., Whittall, K.P., Hailey, J.R.T. (1993) A diffusion model for spin-spin relaxation of compartmentalized water in wood. J. Magn. Reson. B101:248–261.10.1006/jmrb.1993.1041Search in Google Scholar

Araujo, C.D., Avramidis, S., MacKay, A.L. (1994) Behaviour of solid wood and bound water as a function of moisture content: a proton magnetic resonance study. Holzforschung48:69–74.10.1515/hfsg.1994.48.1.69Search in Google Scholar

Brownstein, K.R., Tarr, C.E. (1979) Importance of classical diffusion in NMR studies of water in biological cells. Phys. Rev. A19:2446.10.1103/PhysRevA.19.2446Search in Google Scholar

Carr, H.Y., Purcell, E.M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev.94:630–638.10.1103/PhysRev.94.630Search in Google Scholar

Chen, Z., Wengert, E.M., Lamb, F.M. (1994) A technique to electrically measure the moisture content of wood above fiber saturation. Forest Prod. J.44:57–62.Search in Google Scholar

Flibotte, S., Menon, A.L., MacKay, A.L., Hailey, J.R.T. (1990) Proton magnetic resonance of western red cedar. Forest. Prod. J.22:362–376.Search in Google Scholar

Hall, L.D., Rajanayagam, V. (1986) Evaluation of the distribution of water in wood by use of three-dimensional proton NMR volume imaging. Wood Sci. Technol.20:329–333.10.1007/BF00351585Search in Google Scholar

Harańczyk, H., Węglar, W.P., Sojka, Z. (1999) The investigation of hydration processes in horse chestnut (Aesculus hippocastanum, L.) and pine (Pinus silvestris L.) bark and bast using proton magnetic relaxation. Holzforschung53:299–310.Search in Google Scholar

Hartley, I.D., Kamke, F.A., Peemoeller, H. (1994) Absolute moisture content determination of aspen wood below the fiber saturation point using pulsed NMR. Holzforschung48:474–479.10.1515/hfsg.1994.48.6.474Search in Google Scholar

Hartley, I.D., Avramidis, S., MacKay, A.L. (1996) H-NMR studies of water interactions in Sitka spruce and Western hemlock: moisture content determination and second moments. Wood Sci. Technol.30:141–148.10.1007/BF00224966Search in Google Scholar

Hsi, E., Hossfeld, R., Bryant, R.G. (1977) Nuclear magnetic resonance relaxation study of water absorbed on mill Northern white-cedar. J. Colloid Interface Sci.62:389–395.10.1016/0021-9797(77)90090-XSearch in Google Scholar

Labbé, N. (2002) Mise au point d'une nouvelle méthode de dosage de l'eau dans le bois et caractérisation des composés organiques du pin maritime par résonance magnétique nucléaire domaine temps. Thesis. Université Bordeaux I, France.Search in Google Scholar

Labbé, N., De Jéso, B., Lartigue, J.C., Daudé, G., Pétraud M., Ratier, M. (2002) Moisture content and extractive materials in maritime pine wood by low field 1H NMR. Holzforschung56:25–31.10.1515/HF.2002.005Search in Google Scholar

Laperrousaz, P. (2002) Les peintures en poudre. L'Usine Nouvelle2813:46–47.Search in Google Scholar

Le Botlan, D.J., Ouguerram, L. (1997) Spin-spin relaxation time determination of intermediate states in heterogeneous products from free induction decay NMR signals. Anal. Chim. Acta349:339–347.10.1016/S0003-2670(97)00274-2Search in Google Scholar

Li, T.Q., Ödberg, L. (1993) Determination of pore sizes in wood cellulose fibers by 2D and 1H NMR. Nord. Pulp Paper Res. J.3:326–330.10.3183/npprj-1993-08-03-p326-330Search in Google Scholar

Lindberg, J.J., Laanterä, M. (1996) Hydrogen bonds and macromolecules. The interaction between wood cells and water. Pure Appl. Chem. A33:1385–1388.Search in Google Scholar

Meiboom, S., Gill, D. (1958) Modified spin echo method for measuring relaxation times. Rev. Sci. Instrum.29:688–691.10.1063/1.1716296Search in Google Scholar

Menon, R.S., MacKay, A.L., Hailey, J.R.T., Bloom, M., Burgess A.E., Swanson, J.S. (1987) An NMR determination of the physiological water distribution in wood during drying. J. Appl. Polym. Sci.33:1141–1155.10.1002/app.1987.070330408Search in Google Scholar

Menon, R.S., MacKay, A.L., Flibotte, S., Hailey, J.R.T. (1989) Quantitative separation of NMR images of water in wood on the basis of T2. J. Magn. Reson.82:205–210.10.1016/0022-2364(89)90184-4Search in Google Scholar

Monteiro-Marques, J.P., Rutledge, D.N., Ducauze, C.J. (1991) Low resolution pulse nuclear magnetic resonance study of carrots equilibrated at various water activities and temperatures. Sciences des Aliments11:513–525.Search in Google Scholar

Nanassy, A.J. (1978) Temperature dependence of NMR measurement on moisture in wood. Wood Sci.11:86–90.Search in Google Scholar

Nelson, R.A. (1977) The determination of moisture transitions in cellulosic materials using differential scanning calorimetry. J. Appl. Polym. Sci.21:645–654.10.1002/app.1977.070210306Search in Google Scholar

Peemoeller, H., Schneider, M.H., Sharp, A.R., Kydon, D.W. (1984) Pulsed nuclear magnetic resonance measurement of the relative and absolute oil content in wood. J. Coat. Technol.56:67–72.Search in Google Scholar

Provencher, S.W. (1982a) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun.27:213–227.10.1016/0010-4655(82)90173-4Search in Google Scholar

Provencher, S.W. (1982b) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun.27:229–242.10.1016/0010-4655(82)90174-6Search in Google Scholar

Provencher, S.W., Dovi, V.G. (1979) Direct analysis of continuous relaxation spectra. J. Biochem. Biophys. Methods1:313–318.10.1016/0165-022X(79)90021-6Search in Google Scholar

Quick, J.J., Hailey, J.R.T., MacKay, A.L. (1990) Radial moisture profiles of cedar sapwood during drying: a proton magnetic resonance study. Wood Fiber Sci.22:404–412.Search in Google Scholar

Riggin, M.T., Sharp, A.R., Kaiser, R., Schneider, M. (1979) Transverse NMR relaxation of water in wood. J. Appl. Polym. Sci.23:3147–3155.10.1002/app.1979.070231101Search in Google Scholar

Rowell, R. The Chemistry of Solid Wood, Vol. I. American Chemical Society, Washington, DC, 1984. Chapters 1–6.Search in Google Scholar

Rutledge, D.N. (1996) A Windows program for relaxation parameter estimation. In: Signal Treatment and Signal Analysis in NMR. Ed. Rutledge, D.N. Elsevier Science, Amsterdam. pp. 191–217.10.1016/S0922-3487(96)80046-3Search in Google Scholar

Scholz, E. Karl Fischer Titration – Determination of Water. Springer-Verlag, Berlin, 1984.10.1007/978-3-642-69989-4Search in Google Scholar

Sharp, A.R., Riggin, M.T., Kaiser, R., Schneider, M.H. (1978) Determination of moisture content of wood by pulsed nuclear magnetic resonance. Wood Fiber10:74–81.Search in Google Scholar

Shaw, T.M., Elsken, R.H. (1950) Nuclear magnetic resonance absorption in hygroscopic materials. Chem. Phys.18:1113.10.1063/1.1747875Search in Google Scholar

Skaar, C. Wood Water Relations. Springer-Verlag, New York, 1988.10.1007/978-3-642-73683-4Search in Google Scholar

Vriesenga, J.R., Chandrasekaran, S., Luner, P. (1983) Proton NMR of absorbed water in wood. J. Appl. Polymer Sci. Appl. Polym. Symp.37:911–921.Search in Google Scholar

Whittall, K.P., MacKay, A.L. (1989) Quantitative interpretation of NMR relaxation data. J. Magn. Reson.84:134–153.10.1016/0022-2364(89)90011-5Search in Google Scholar

Xu, Y., Araujo, C.D., MacKay, A.L., Whittall, K.P. (1996) Proton spin-lattice relaxation in wood –T1 related to local specific gravity using a fast exchange model. Magn. Reson. B110:55–64.10.1006/jmrb.1996.0007Search in Google Scholar

Published Online: 2006-05-03
Published in Print: 2006-05-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Brightness stabilisation of bleached high-yield pulps by novel sulfur-containing inhibitors
  2. Application of UV-Vis and resonance Raman spectroscopy to study bleaching and photoyellowing of thermomechanical pulps
  3. Characteristics of NAEM salt-catalyzed alcohol organosolv pulping as a biorefinery
  4. Effect of poly(ethylene oxide) molecular mass on miscibility and hydrogen bonding with lignin
  5. Calculation of the relative bonded area and scattering coefficient from sheet density and fibre shape
  6. Formic and acetic acids in archaeological wood. A comparison between the Vasa Warship, the Bremen Cog, the Oberländer Boat and the Danish Viking Ships
  7. Time-domain 1H NMR characterization of the liquid phase in greenwood
  8. Chemical reaction of alkoxysilane molecules in wood modified with silanol groups
  9. Dimensional stability of MDF panels produced from heat-treated fibres
  10. Multivariate modeling of MDF panel properties in relation to wood fiber characteristics
  11. Viscoelastic behaviour of solid wood under compressive loading
  12. The creep of wood destabilized by change in moisture content. Part 3: The influence of changing moisture history on creep behavior
  13. Air permeability of aspen veneer and glueline: Experimentation and implications
  14. Fracture cleavage analysis of PVAc latex adhesives: Influence of phenolic additives
  15. Effect of a waterproof agent on gypsum particleboard properties
  16. Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking
  17. Analytical tools to predict changes in properties of oriented strandboard exposed to the fungus Postia placenta
  18. The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi
Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2006.043/html?lang=en
Scroll to top button