Home Use of near infrared spectroscopy to predict the mechanical properties of six softwoods
Article
Licensed
Unlicensed Requires Authentication

Use of near infrared spectroscopy to predict the mechanical properties of six softwoods

  • S.S. Kelley , T.G. Rials , L.R. Groom and C.-L. So
Published/Copyright: June 1, 2005
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 58 Issue 3

Abstract

The visible and near infrared (NIR) (500–2400 nm) spectra and mechanical properties of almost 1000 small clearwood samples from six softwood species: Pinus taeda L. (loblolly pine), Pinus palustris, Mill. (longleaf pine), Pinus elliottii Engelm. (slash pine), Pinus echinata Mill. (shortleaf pine), Pinus ponderosa Dougl. ex Laws (ponderosa pine), and Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) were measured. Projection to Latent Structures (PLS) modeling showed that the NIR spectra of these softwoods could be used to predict the mechanical properties of the clear-wood samples. The correlation coefficients for most of these models were greater than 0.80. All six softwood species were combined into one data set and a PLS model was constructed that effectively predicted the strength properties of any of the individual softwoods. Reducing the spectral range to between 650 and 1050 nm only causes a slight decrease in the quality of the models. Using this narrow spectral range enables the use of smaller, faster, lighter, less expensive spectrometers that could be used either in the field or for process control applications.

:
Published Online: 2005-06-01
Published in Print: 2004-05-12

Copyright © 2004 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. The Bremen Cog of 1380 – An electron microscopic study of its degraded wood before and after stabilization with PEG
  2. Ultrastructure of iodine treated wood
  3. Effects of refining on the fibre structure of kraft pulps as revealed by FE-SEM and TEM: Influence of alkaline degradation
  4. Changes in the fiber wall during refining of bleached pine kraft pulp
  5. An unusual formation of tension wood in a natural forest Acacia sp.
  6. Changes in the surface properties of wood due to sanding
  7. Use of near infrared spectroscopy to predict the mechanical properties of six softwoods
  8. The creep of wood destabilized by change in moisture content. Part 1: The creep behaviors of wood during and immediately after drying
  9. Modeling the process of desorption of water in oak (Quercus robur L.) wood
  10. Moisture adsorption thermodynamics of wood from fractal-geometry approach
  11. Application of ionic liquids for electrostatic control in wood
  12. Ionic liquids in wood preservation
  13. New bis-quaternary ammonium and bis-imidazolium chloride wood preservatives
  14. Environmentally-benign wood preservatives based on an organic biocide:antioxidant combination: Ground-contact efficacy ratings and BHT depletion after four years of exposure
  15. Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction
  16. Fungal decay resistance of wood reacted with phosphorus pentoxide-amine system
  17. The use of organo alkoxysilane coupling agents for wood preservation
  18. Phenolic extractives from wood of birch (Betula pendula)
  19. Stability of arylglycerols during alkaline cooking
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2004.039/html
Scroll to top button