Startseite Mathematik A Burgess-like subconvex bound for twisted L-functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Burgess-like subconvex bound for twisted L-functions

  • V Blomer EMAIL logo , G Harcos , P Michel und Z Mao
Veröffentlicht/Copyright: 21. Februar 2007
Forum Mathematicum
Aus der Zeitschrift Band 19 Heft 1

Abstract

Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus, χ a primitive character of conductor q, and s a point on the critical line ℜs = ½. It is proved that

,

where ε > 0 is arbitrary and θ = is the current known approximation towards the Ramanujan–Petersson conjecture (which would allow θ = 0); moreover, the dependence on s and all the parameters of g is polynomial. This result is an analog of Burgess' classical subconvex bound for Dirichlet L-functions. In Appendix 2 the above result is combined with a theorem of Waldspurger and the adelic calculations of Baruch–Mao to yield an improved uniform upper bound for the Fourier coefficients of holomorphic half-integral weight cusp forms.


(Communicated by Peter Sarnak)


Received: 2004-11-23
Published Online: 2007-02-21
Published in Print: 2007-01-29

© Walter de Gruyter

Heruntergeladen am 5.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/FORUM.2007.003/pdf?lang=de
Button zum nach oben scrollen