Abstract
In this paper we study the Fuchsian RiemannHilbert (inverse monodromy) problem corresponding to Frobenius structures on Hurwitz spaces. We find a solution to this RiemannHilbert problem in terms of integrals of certain meromorphic differentials over a basis of an appropriate relative homology space over a Riemann surface, study the corresponding monodromy group and compute the monodromy matrices explicitly for various special cases.
Received: 2009-10-07
Revised: 2010-05-19
Published Online: 2011-December
Published in Print: 2011-December
Walter de Gruyter Berlin New York 2011
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- On the cyclotomic main conjecture for the prime 2
- Some consequences of Arthur's conjectures for special orthogonal even groups
- Cartier modules: Finiteness results
- RiemannHilbert problem for Hurwitz Frobenius manifolds: Regular singularities
- Prime factors of dynamical sequences
- Enriques manifolds
- Volume versus rank of lattices
Artikel in diesem Heft
- On the cyclotomic main conjecture for the prime 2
- Some consequences of Arthur's conjectures for special orthogonal even groups
- Cartier modules: Finiteness results
- RiemannHilbert problem for Hurwitz Frobenius manifolds: Regular singularities
- Prime factors of dynamical sequences
- Enriques manifolds
- Volume versus rank of lattices