Startseite Prime factors of dynamical sequences
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Prime factors of dynamical sequences

  • Xander Faber EMAIL logo und Andrew Granville
Veröffentlicht/Copyright: 1. Dezember 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2011 Heft 661

Abstract

Let (t) (t) have degree d 2. For a given rational number x0, define xn1(xn) for each n 0. If this sequence is not eventually periodic, and if does not lie in one of two explicitly determined affine conjugacy classes of rational functions, then xn1xn has a primitive prime factor in its numerator for all sufficiently large n. The same result holds for the exceptional maps provided that one looks for primitive prime factors in the denominator of xn1xn. Hence the result for each rational function of degree at least 2 implies (a new proof) that there are infinitely many primes. The question of primitive prime factors of xnxn is also discussed for uniformly bounded.

Received: 2009-10-21
Revised: 2010-07-18
Published Online: 2011-December
Published in Print: 2011-December

Walter de Gruyter Berlin New York 2011

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2011.081/html
Button zum nach oben scrollen