Startseite Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables

  • Andreas Defant , Manuel Maestre und Christopher Prengel
Veröffentlicht/Copyright: 6. Juli 2009
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2009 Heft 634

Abstract

Let ℱ(R) be a set of holomorphic functions on a Reinhardt domain R in a Banach sequence space (as e.g. all holomorphic functions or all m-homogeneous polynomials on the open unit ball of ). We give a systematic study of the sets dom ℱ(R) of all zR for which the monomial expansion of every ƒ ∈ ℱ(R) converges. Our results are based on and improve the former work of Bohr, Dineen, Lempert, Matos and Ryan. In particular, we show that up to any ε > 0 is the unique Banach sequence space X for which the monomial expansion of each holomorphic function ƒ converges at each point of a given Reinhardt domain in X. Our study shows clearly why Hilbert's point of view to develop a theory of infinite dimensional complex analysis based on the concept of monomial expansion, had to be abandoned early in the development of the theory.

Received: 2008-04-02
Published Online: 2009-07-06
Published in Print: 2009-September

© Walter de Gruyter Berlin · New York 2009

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2009.068/html?srsltid=AfmBOoqMmmo2L2vCU7dS61oF6SitzWhctP8CPPdI-8TUBQz3gz7V4S5j
Button zum nach oben scrollen