Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Quantum groups acting on 4 points
-
Teodor Banica
Veröffentlicht/Copyright:
8. Januar 2009
Abstract
We classify the compact quantum groups acting on 4 points. These are the quantum subgroups of the quantum permutation group 𝓠4. Our main tool is a new presentation for the algebra C(𝓠4), corresponding to an isomorphism of type 𝓠4 ≃ SO–1(3). The quantum subgroups of 𝓠4 are subject to a McKay type correspondence, that we describe at the level of algebraic invariants.
Received: 2007-05-24
Revised: 2007-09-04
Published Online: 2009-01-08
Published in Print: 2009-January
© Walter de Gruyter Berlin · New York 2009
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- The holonomy groupoid of a singular foliation
- Complex analytic geometry and analytic-geometric categories
- Quantum groups acting on 4 points
- Modular varieties of 𝒟-elliptic sheaves and the Weil-Deligne bound
- Heat kernel upper bounds for jump processes and the first exit time
- Unbounded Fredholm modules and double operator integrals
- Proof of the Tadić conjecture (U0) on the unitary dual of GLm(D)
- A finiteness theorem for canonical heights attached to rational maps over function fields
Artikel in diesem Heft
- The holonomy groupoid of a singular foliation
- Complex analytic geometry and analytic-geometric categories
- Quantum groups acting on 4 points
- Modular varieties of 𝒟-elliptic sheaves and the Weil-Deligne bound
- Heat kernel upper bounds for jump processes and the first exit time
- Unbounded Fredholm modules and double operator integrals
- Proof of the Tadić conjecture (U0) on the unitary dual of GLm(D)
- A finiteness theorem for canonical heights attached to rational maps over function fields