Startseite Purely infinite C*-algebras of real rank zero
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Purely infinite C*-algebras of real rank zero

  • Cornel Pasnicu EMAIL logo und Mikael Rørdam
Veröffentlicht/Copyright: 5. Februar 2008
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2007 Heft 613

Abstract

We show that a separable purely infinite C*-algebra is of real rank zero if and only if its primitive ideal space has a basis consisting of compact-open sets and the natural map K0(I) → K0(I/J) is surjective for all closed two-sided ideals JI in the C*-algebra. It follows in particular that if A is any separable C*-algebra, then A ⊗𝒪2 is of real rank zero if and only if the primitive ideal space of A has a basis of compact-open sets, which again happens if and only if A ⊗ 𝒪2 has the ideal property, also known as property (IP).

Received: 2006-06-30
Published Online: 2008-02-05
Published in Print: 2007-12-19

© Walter de Gruyter

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2007.091/html
Button zum nach oben scrollen