Abstract
We show the following theorem: Let X be an irreducible compact Hermitian symmetric manifold of complex dimension n whose bisectional curvature is (s − 1)-nondegenerate. Then in X there exists no smooth Levi-flat CR manifold M with real co-dimension n – s and CR dimension s ≧ 2, such that the determinant ℂ-line bundle of is smoothly trivial.
Received: 2003-11-25
Revised: 2006-06-19
Published Online: 2007-03-12
Published in Print: 2007-03-27
© Walter de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Massey products and ideal class groups
- Purity of exponential sums on 𝔸n, II
- Sheaves on Artin stacks
- Levi umbilical surfaces in complex space
- A realization of the Hecke algebra on the space of period functions for Γ0 (n)
- The 5-canonical system on 3-folds of general type
- On Spin L-functions for GSO10
- Nonexistence of higher codimensional Levi-flat CR manifolds in symmetric spaces
Artikel in diesem Heft
- Massey products and ideal class groups
- Purity of exponential sums on 𝔸n, II
- Sheaves on Artin stacks
- Levi umbilical surfaces in complex space
- A realization of the Hecke algebra on the space of period functions for Γ0 (n)
- The 5-canonical system on 3-folds of general type
- On Spin L-functions for GSO10
- Nonexistence of higher codimensional Levi-flat CR manifolds in symmetric spaces