Abstract
In this paper we establish the relationships between theta functions of arbitrary order and their derivatives. We generalize our previous work [Grushevsky, S., Salvati Manni, R., Gradients of odd theta functions, J. reine angew. Math. 573 (2004), 43-59.] and prove that for any n > 1 the map sending an abelian variety to the set of Gauss images of its points of order 2n is an embedding into an appropriate Grassmannian (note that for n = 1 we only got generic injectivity in [Grushevsky, S., Salvati Manni, R., Gradients of odd theta functions, J. reine angew. Math. 573 (2004), 43-59.]). We further discuss the generalizations of Jacobi's derivative formula for any dimension and any order.
© Walter de Gruyter
Artikel in diesem Heft
- Rough solutions of the Einstein constraint equations
- Theta functions of arbitrary order and their derivatives
- Extended deformation of Kodaira surfaces
- Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faisceaux cohérents
- Sheaves of t-structures and valuative criteria for stable complexes
- Rational connectedness of log Q-Fano varieties
- Operator synthesis II: Individual synthesis and linear operator equations
- Moufang quadrangles of type E6 and E7
- Tannakian Krull-Schmidt reduction
Artikel in diesem Heft
- Rough solutions of the Einstein constraint equations
- Theta functions of arbitrary order and their derivatives
- Extended deformation of Kodaira surfaces
- Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faisceaux cohérents
- Sheaves of t-structures and valuative criteria for stable complexes
- Rational connectedness of log Q-Fano varieties
- Operator synthesis II: Individual synthesis and linear operator equations
- Moufang quadrangles of type E6 and E7
- Tannakian Krull-Schmidt reduction