Home Medicine Pyrosequencing protocol requiring a unique biotinylated primer
Article
Licensed
Unlicensed Requires Authentication

Pyrosequencing protocol requiring a unique biotinylated primer

  • Jose Luis Royo , Manuel Hidalgo Pascual , Ana Salinas , Francisco Jose Tello , Maria del Carmen Rivero , Eduardo Ferrero Herrero , Luis Miguel Real and Agustín Ruiz
Published/Copyright: April 7, 2006

Abstract

Background: DNA sequencing has markedly changed the nature of biomedical research. Large-scale sequencing projects have generated several millions of potential polymorphisms widespread in the human genome requiring validation and incorporation into screening panels. As a consequence, high-throughput analysis of these variants in different populations of interest is now the cornerstone of structural genomics. Pyrosequencing is a versatile technique allowing an easy 96-well typing format. However, every polymorphism requires a specific labeled primer to generate a single-stranded DNA fragment containing the region of interest.

Methods: We describe how with an adjusted primer stoichiometry we can standardize the labeling of every amplicon with a single biotinylated universal primer (BM13S).

Results: We circumvent the need for specific biotinylated primers for each single-nucleotide polymorphism (SNP) under study. As an example, we assessed this novel protocol by genotyping three SNPs mapping calpain-10, caveolin-1 and CYP19A1.

Conclusion: The present approach represents an alternative to standard pyrosequencing protocols, since it requires a single biotinylated primer that is suitable for each SNP under study.


Corresponding author: Jose Luis Royo, Departamento de Genomica Estructural, Neocodex SL, Avda Charles Darwin s/n, Isla de la Cartuja, Sevilla, Spain Phone: +34-955047618, Fax: +34-955047325,

References

1. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307:1072–9.10.1126/science.1105436Search in Google Scholar PubMed

2. Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol 1998; 16:49–53.10.1038/nbt0198-49Search in Google Scholar PubMed

3. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science 1998; 281:363–5.10.1126/science.281.5375.363Search in Google Scholar PubMed

4. Hardenbol P, Baner J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 2003; 21:673–8.10.1038/nbt821Search in Google Scholar PubMed

5. O'Meara D, Ahmadian A, Odeberg J, Lundeberg J. SNP typing by a pyrase-mediated allele-specific primer extension on DNA microarrays. Nucleic Acids Res 2002; 30:e75.10.1093/nar/gnf074Search in Google Scholar PubMed PubMed Central

6. Kruckeberg KE, Thibodeau SN. Pyrosequencing technology as a method for the diagnosis of multiple endocrine neoplasia type 2. Clin Chem 2004; 50:522–9.10.1373/clinchem.2003.027128Search in Google Scholar PubMed

7. Frey UH, Nuckel H, Dobrev D, Manthey I, Sandalcioglu IE, Eisenhardt A, et al. Quantification of G protein Gαs sub-unit splice variants in different human tissues and cells using pyrosequencing. Gene Expr 2005; 12:69–81.10.3727/000000005783992124Search in Google Scholar PubMed PubMed Central

8. Soderback E, Zackrisson AL, Lindblom B, Alderborn A. Determination of CYP2D6 gene copy number by pyrosequencing. Clin Chem 2005; 51:522–31.10.1373/clinchem.2004.043182Search in Google Scholar PubMed

9. Pielberg G, Day AE, Plastow GS, Andersson L. A sensitive method for detecting variation in copy numbers of duplicated genes. Genome Res 2003; 13:2171–7.10.1101/gr.1188203Search in Google Scholar PubMed PubMed Central

10. Sivertsson A, Platz A, Hansson J, Lundeberg J. Pyrosequencing as an alternative to single-strand conformation polymorphism analysis for detection of N-ras mutations in human melanoma metastases. Clin Chem 2002; 48:2164–70.10.1093/clinchem/48.12.2164Search in Google Scholar

11. Aquilante CL, Lobmeyer MT, Langaee TY, Johnson JA. Comparison of cytochrome P450 2C9 genotyping methods and implications for the clinical laboratory. Pharmacotherapy 2004; 24:720–6.10.1592/phco.24.8.720.36074Search in Google Scholar

12. Nordfors L, Jansson M, Sandberg G, Lavebratt C, Sengul S, Schalling M, et al. Large-scale genotyping of single nucleotide polymorphisms by Pyrosequencing™ and validation against the 5′-nuclease (Taqman) assay. Hum Mutat 2002; 19:395–401.10.1002/humu.10062Search in Google Scholar

13. Gharizadeh B, Eriksson J, Nourizad N, Nordstrom T, Nyren P. Improvements in pyrosequencing technology by employing Sequenase polymerase. Anal Biochem 2004; 330:272–80.10.1016/j.ab.2004.03.018Search in Google Scholar

14. Nordstrom T, Nourizad K, Ronaghi M, Nyren P. Method enabling pyrosequencing on double-stranded DNA. Anal Biochem 2000; 282:186–93.10.1006/abio.2000.4603Search in Google Scholar

15. Fakhrai-Rad H, Pourmand N, Ronaghi M. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat 2002; 19:479–85.10.1002/humu.10078Search in Google Scholar

16. Pacey-Miller T, Henry R. Single-nucleotide polymorphism detection in plants using a single-stranded pyrosequencing protocol with a universal biotinylated primer. Anal Biochem 2003; 317:166–70.10.1016/S0003-2697(03)00089-7Search in Google Scholar

Received: 2005-11-18
Accepted: 2006-1-3
Published Online: 2006-4-7
Published in Print: 2006-4-1

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Natriuretic peptides and evidence-based quality specifications
  2. Preanalytical variability: the dark side of the moon in laboratory testing
  3. Clinical relevance of biological variation: the lesson of brain natriuretic peptide (BNP) and NT-proBNP assay
  4. Hepatorenal syndrome
  5. Modified Levey-Jennings charts for calculated laboratory tests
  6. Increased free malondialdehyde concentrations in smokers normalise with a mixed fruit and vegetable juice concentrate: a pilot study
  7. The exponentially weighted moving average (EWMA) rule compared with traditionally used quality control rules
  8. Intermethod calibration of alanine aminotransferase (ALT) and γ-glutamyltransferase (GGT) results: application to Fibrotest® and Actitest® scores
  9. Comparison of TEST 1 with SRS 100 and ICSH reference method for the measurement of the length of sedimentation reaction in blood
  10. Multicenter evaluation of the interference of hemoglobin, bilirubin and lipids on Synchron LX-20 assays
  11. Technical evaluation of the Beckman Coulter OV-Monitor (CA 125 antigen) immunoassay
  12. Erythrocyte membrane Na+,K+-ATPase and Mg2+-ATPase activities in subjects with methylenetetrahydrofolate reductase (MTHFR) 677 C→T genotype and moderate hyperhomocysteinaemia. The role of L-phenylalanine and L-alanine
  13. Matrix metalloproteinases and their inhibitors in different acute stroke subtypes
  14. Pyrosequencing protocol requiring a unique biotinylated primer
  15. Detection of antibodies against 60-, 65- and 70-kDa heat shock proteins in paediatric patients with various disorders using Western blotting and ELISA
  16. Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry
  17. Time-level relationship between indicators of oxidative stress and Glasgow Coma Scale scores of severe head injury patients
  18. Stepwise strategies in analysing haematuria and leukocyturia in screening
  19. Elevation of serum cerebral injury markers correlates with serum choline decline after coronary artery bypass grafting surgery
  20. Drug screening in urine by cloned enzyme donor immunoassay (CEDIA) and kinetic interaction of microparticles in solution (KIMS): a comparative study
  21. Release of anandamide from blood cells
  22. Rapid decrease in plasma D-lactate as an early potential predictor of diminished 28-day mortality in critically ill septic shock patients
  23. Evaluation of an immunoassay of whole blood sirolimus in pediatric transplant patients in comparison with high-performance liquid chromatography/tandem mass spectrometry
  24. Sample processing and its preanalytical impact on the measurement of circulating matrix metalloproteinases
  25. Physiological matrix metalloproteinase (MMP) concentrations: comparison of serum and plasma specimens
  26. Importance of the functional sensitivity determination of a serum hyaluronic acid assay for the prediction of liver fibrosis in patients with features of the metabolic syndrome
  27. The dilemma of invasive and non-invasive investigations for adult and paediatric non-alcoholic fatty liver disease: has the time come for a new biochemical marker?
  28. Is cystatin C a reliable renal marker in trauma?
  29. On the independence of intraindividual reference values
  30. Sixth International Symposium on Molecular Diagnostics, Graz, Austria, May 25-27, 2006
Downloaded on 30.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CCLM.2006.072/html?lang=en
Scroll to top button