Home Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry
Article
Licensed
Unlicensed Requires Authentication

Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry

  • Desirée E.C. Smith , Robert M. Kok , Tom Teerlink , Cornelis Jakobs and Yvo M. Smulders
Published/Copyright: September 21, 2011

Abstract

Background: Given the role of folate in many disorders, intracellular distribution of folate vitamers is of potential clinical importance. In particular, accumulation of non-methyltetrahydrofolates due to altered partitioning of folate metabolism at the level of methylenetetrahydrofolate is of interest.

Methods: We describe a positive-electrospray liquid chromatography tandem mass spectrometry (LC-MS/MS) method that allows determination of erythrocyte folate vitamer distribution by accurately measuring both 5-methyltetrahydrofolate (5-methylTHF) and non-methyl folate vitamers. Whole blood lysates are deconjugated in ascorbic acid solutions, deproteinized, purified using folate-binding protein affinity columns, concentrated by solid-phase extraction (SPE) and evaporation, and separated on a C18 column within 6min.

Results: The limit of quantification for both 5-methylTHF and non-methylTHF was 0.4nmol/L (signal-to-noise >10). Intra- and inter-assay CVs for 5-methylTHF were 1.2% and 2.8%, respectively. Intra- and inter-assay CVs for non-methylTHF as a group were 1.6% and 1.5%, respectively. Recovery results were 97–107%. We measured 8–72% non-methyl folate vitamers in volunteers (n=5) with the methylenetetrahydrofolate reductase (MTHFR) 677 TT genotype. Concentrations ranged from 117 to 327nmol/L and 23 to 363nmol/L for 5-methylTHF and non-methylTHF vitamers, respectively. We measured 0–2% non-methylTHF vitamers in MTHFR 677 CC genotype volunteers. In addition, we found that storage of whole-blood samples in ascorbic acid at low pH resulted in 53–90% loss of the non-methylTHF fraction.

Conclusion: This LC-MS/MS method accurately determines erythrocyte 5-methylTHF and non-methyl folate vitamers.


Corresponding author: Dr. Yvo M. Smulders, Department of Internal Medicine, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands Phone: +31-20-4444307, Fax: +31-20-4444313

References

1. Shaw GM, Schaffer D, Velie EM, Morland K, Harris JA. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology 1995; 6:219–26.10.1097/00001648-199505000-00005Search in Google Scholar

2. Zittoun J. [Anemias due to disorder of folate, vitamin B12 and transcobalamin metabolism]. Rev Prat 1993; 43:1358–63.Search in Google Scholar

3. Voutilainen S, Rissanen TH, Virtanen J, Lakka TA, Salonen JT. Low dietary folate intake is associated with an excess incidence of acute coronary events: The Kuopio Ischemic Heart Disease Risk Factor Study. Circulation 2001; 103:2674–80.10.1161/01.CIR.103.22.2674Search in Google Scholar

4. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 2002; 346:476–83.10.1056/NEJMoa011613Search in Google Scholar

5. Mason JB. Folate and colonic carcinogenesis: searching for a mechanistic understanding. J Nutr Biochem 1994; 5:170–5.10.1016/0955-2863(94)90068-XSearch in Google Scholar

6. Finkelstein JD, Martin JJ. Homocysteine. Int J Biochem Cell Biol 2000; 32:385–9.10.1016/S1357-2725(99)00138-7Search in Google Scholar

7. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10:111–3.10.1038/ng0595-111Search in Google Scholar PubMed

8. Rozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost 1997; 78:523–6.10.1055/s-0038-1657581Search in Google Scholar

9. Bagley PJ, Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 1998; 95:13217–20.10.1073/pnas.95.22.13217Search in Google Scholar PubMed PubMed Central

10. Levine S. Analytical inaccuracy for folic acid with a popular commercial vitamin B12/folate kit. Clin Chem 1993; 39:2209–10.10.1093/clinchem/39.10.2209Search in Google Scholar

11. Chanarin I. The megaloblastic anaemias. Oxford, UK: Blackwell Scientific, 1979:187–90.Search in Google Scholar

12. Belz S, Nau H. Determination of folate patterns in mouse plasma, erythrocytes, and embryos by HPLC coupled with a microbiological assay. Anal Biochem 1998; 265:157–66.10.1006/abio.1998.2865Search in Google Scholar PubMed

13. Patring JD, Jastrebova JA, Hjortmo SB, Andlid TA, Jägerstad IM. Development of a simplified method for the determination of folates in baker's yeast by HPLC with ultraviolet and fluorescence detection. J Agric Food Chem 2005; 53:2406–11.10.1021/jf048083gSearch in Google Scholar

14. Bagley PJ, Selhub J. Analysis of folate form distribution by affinity followed by reversed-phase chromatography with electrical detection. Clin Chem 2000; 46:404–11.10.1093/clinchem/46.3.404Search in Google Scholar

15. Eto I, Krumdieck CL. Determination of three different pools of reduced one-carbon-substituted folates. Anal Biochem 1980; 109:167–84.10.1016/0003-2697(80)90026-3Search in Google Scholar

16. Fazili Z, Pfeiffer CM. Measurement of folates in serum and conventionally prepared whole blood lysates: application of an automated 96-well plate isotope-dilution tandem mass spectrometry method. Clin Chem 2004; 50:2378–81.10.1373/clinchem.2004.036541Search in Google Scholar

17. Bertino JR, Coward JK, Cashmore A, Chello P, Panichajakul S, Horvath CG, et al. Polyglutamate forms of folate: natural occurrence and role as substrates in mammalian cells. Biochem Soc Trans 1976; 4:853–6.10.1042/bst0040853Search in Google Scholar

18. Matthews RG, Ghose C, Green JM, Matthews KD, Dunlap RB. Folylpolyglutamates as substrates and inhibitors of folate-dependent enzymes. Adv Enzyme Regul 1987; 26:157–71.10.1016/0065-2571(87)90012-4Search in Google Scholar

19. Kelly P, McPartlin J, Goggins M, Weir DG, Scott JM. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am J Clin Nutr 1997; 65:1790–5.10.1093/ajcn/65.6.1790Search in Google Scholar

20. Rabinowitz JC. Preparation and properties of 5,10-methenyltetrahydrofolic acid and 10-formyltetrahydrofolic acid. Methods Enzymol 1963; 6:814–5.10.1016/0076-6879(63)06256-XSearch in Google Scholar

21. Blakley RL. The biochemistry of folic acid and related pteridines. In: Neuberger A, Tatum EL, editors. Frontiers of biology. London: North-Holland, 1969:92–4.Search in Google Scholar

22. Wright AJ, Finglas PM, Southon S. Erythrocyte folate analysis: saponin added during lysis of whole blood can increase apparent folate concentrations, depending on hemolysate pH. Clin Chem 2000; 46:1978–86.10.1093/clinchem/46.12.1978Search in Google Scholar

23. Pfeiffer CM, Gregory JF III. Enzymatic deconjugation of erythrocyte polyglutamyl folates during preparation for folate assay: investigation with reversed-phase liquid chromatography. Clin Chem 1996; 42:1847–54.10.1093/clinchem/42.11.1847Search in Google Scholar

24. Kok RM, Smith DE, Dainty JR, Van Den Akker JT, Finglas PM, Smulders YM, et al. 5-Methyltetrahydrofolic acid and folic acid measured in plasma with liquid chromatography tandem mass spectrometry: applications to folate absorption and metabolism. Anal Biochem 2004; 326:129–38.10.1016/j.ab.2003.12.003Search in Google Scholar PubMed

25. Fazili Z, Pfeiffer CM, Zhang M, Jain R. Erythrocyte folate extraction and quantitative determination by LC/MS/MS: comparison of results with microbiologic assay. Clin Chem 2005; 51:2318–25.10.1373/clinchem.2005.053801Search in Google Scholar PubMed

26. Owens JE, Holstege DM, Clifford AJ. Quantitation of total folate in whole blood using LC-MS/MS. J Agric Food Chem 2005; 53:7390–4.10.1021/jf0510485Search in Google Scholar PubMed

27. Freisleben A, Schieberle P, Rychlik M. Specific and sensitive quantification of folate vitamers in foods by stable isotope dilution assays using high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2003; 376:149–56.10.1007/s00216-003-1844-ySearch in Google Scholar PubMed

28. Vahteristo LT, Ollilainen V, Koivistoinen PE, Varo P. Improvements in the analysis of reduced folate monoglutamates and folic acid in food by high-performance liquid chromatography. J Agric Food Chem 1996; 44:477–82.10.1021/jf9503467Search in Google Scholar

29. Zhang G-F, Storozhenko S, Van Der Straeten D, Lambert WE. Investigation of the extraction behaviour of the main monoglutamate folates from spinach by liquid chromatography-electrospray ionisation tandem mass spectrometry. J Chromatogr A 2005; 1078:59–66.10.1016/j.chroma.2005.04.085Search in Google Scholar PubMed

30. Gunter EW, Bowman BA, Caudill SP, Twite DB, Adams MJ, Sampson EJ. Results of an international round robin for serum and whole-blood folate. Clin Chem 1996; 42:1689–94.10.1093/clinchem/42.10.1689Search in Google Scholar

31. Suh JR, Herbig AK, Stover PJ. New perspectives on folate catabolism. Annu Rev Nutr 2001; 21:255–82.10.1146/annurev.nutr.21.1.255Search in Google Scholar PubMed

Received: 2005-11-8
Accepted: 2006-1-16
Published Online: 2011-9-21
Published in Print: 2006-4-1

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Natriuretic peptides and evidence-based quality specifications
  2. Preanalytical variability: the dark side of the moon in laboratory testing
  3. Clinical relevance of biological variation: the lesson of brain natriuretic peptide (BNP) and NT-proBNP assay
  4. Hepatorenal syndrome
  5. Modified Levey-Jennings charts for calculated laboratory tests
  6. Increased free malondialdehyde concentrations in smokers normalise with a mixed fruit and vegetable juice concentrate: a pilot study
  7. The exponentially weighted moving average (EWMA) rule compared with traditionally used quality control rules
  8. Intermethod calibration of alanine aminotransferase (ALT) and γ-glutamyltransferase (GGT) results: application to Fibrotest® and Actitest® scores
  9. Comparison of TEST 1 with SRS 100 and ICSH reference method for the measurement of the length of sedimentation reaction in blood
  10. Multicenter evaluation of the interference of hemoglobin, bilirubin and lipids on Synchron LX-20 assays
  11. Technical evaluation of the Beckman Coulter OV-Monitor (CA 125 antigen) immunoassay
  12. Erythrocyte membrane Na+,K+-ATPase and Mg2+-ATPase activities in subjects with methylenetetrahydrofolate reductase (MTHFR) 677 C→T genotype and moderate hyperhomocysteinaemia. The role of L-phenylalanine and L-alanine
  13. Matrix metalloproteinases and their inhibitors in different acute stroke subtypes
  14. Pyrosequencing protocol requiring a unique biotinylated primer
  15. Detection of antibodies against 60-, 65- and 70-kDa heat shock proteins in paediatric patients with various disorders using Western blotting and ELISA
  16. Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography-tandem mass spectrometry
  17. Time-level relationship between indicators of oxidative stress and Glasgow Coma Scale scores of severe head injury patients
  18. Stepwise strategies in analysing haematuria and leukocyturia in screening
  19. Elevation of serum cerebral injury markers correlates with serum choline decline after coronary artery bypass grafting surgery
  20. Drug screening in urine by cloned enzyme donor immunoassay (CEDIA) and kinetic interaction of microparticles in solution (KIMS): a comparative study
  21. Release of anandamide from blood cells
  22. Rapid decrease in plasma D-lactate as an early potential predictor of diminished 28-day mortality in critically ill septic shock patients
  23. Evaluation of an immunoassay of whole blood sirolimus in pediatric transplant patients in comparison with high-performance liquid chromatography/tandem mass spectrometry
  24. Sample processing and its preanalytical impact on the measurement of circulating matrix metalloproteinases
  25. Physiological matrix metalloproteinase (MMP) concentrations: comparison of serum and plasma specimens
  26. Importance of the functional sensitivity determination of a serum hyaluronic acid assay for the prediction of liver fibrosis in patients with features of the metabolic syndrome
  27. The dilemma of invasive and non-invasive investigations for adult and paediatric non-alcoholic fatty liver disease: has the time come for a new biochemical marker?
  28. Is cystatin C a reliable renal marker in trauma?
  29. On the independence of intraindividual reference values
  30. Sixth International Symposium on Molecular Diagnostics, Graz, Austria, May 25-27, 2006
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CCLM.2006.085/html
Scroll to top button