Home Apolipoprotein E Polymorphisms and Concentration in Chronic Diseases and Drug Responses
Article
Licensed
Unlicensed Requires Authentication

Apolipoprotein E Polymorphisms and Concentration in Chronic Diseases and Drug Responses

  • Gérard Siest , Philippe Bertrand , Bernard Herbeth , Monique Vincent-Viry , Françoise Schiele , Catherine Sass and Sophie Visvikis
Published/Copyright: June 1, 2005
Become an author with De Gruyter Brill
Clinical Chemistry and Laboratory Medicine (CCLM)
From the journal Volume 38 Issue 9

Abstract

Apolipoprotein (apo) E is an important circulating and tissue protein involved in cholesterol homeostasis and many other functions. The common polymorphism in the coding region of the gene, four polymorphisms in the promoter region, other additional single nucleotide polymorphisms, as well as several apo E variants have been identified. The common coding polymorphism strongly influences the lipid metabolism and the circulating concentration of apo E itself. This polymorphism is at the origin of the implication of apo E in cardiovascular and neurodegenerative diseases, but also of the relation of apo E with longevity. Probably due to its many metabolic and functional consequences, apo E polymorphism has been shown to influence the responses of patients to several drugs (fibrates, statins, hormone replacement therapy, anti-Alzheimer drugs) or environmental interventions (black tea, alcohol, diet). Apo E genotyping may be clinically helpful in defining the risk of patients and their responses to therapeutics. Finally, circulating apo E concentration appears to be altered in diseases and can be modulated by some of the drugs cited above. This parameter can thus also give interesting clinical information and could be a therapeutic target, providing it is validated. At the present time, we cannot exclude that apo E concentration may be the most prominent apo E parameter to be considered in health and disease, while apo E polymorphisms would represent only secondary parameters influencing apo E concentration.

:
Published Online: 2005-06-01
Published in Print: 2000-09-18

Copyright © 2000 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. The Basis of the Medicine of Tomorrow "Validating and Using Pharmacogenomics" Joint IFCC-Roche Diagnostics Conference, Kyoto, Japan, 1619 April 2000
  2. Diagnostics and the Future of Medicine
  3. Operomics: Molecular Analysis of Tissues from DNA to RNA to Protein
  4. Idiosyncratic Reactions to Drugs: Can Medicine Response Profiles Provide a Dynamic Drug Surveillance System?
  5. Hunting for Disease Genes in Multi-Functional Diseases
  6. Familial Studies on the Genetics of Cardiovascular Diseases: the Stanislas Cohort
  7. Quantitative PCR
  8. Gene Amplification as Means for Determining Therapeutic Strategies in Human Cancers
  9. Apolipoprotein E Polymorphisms and Concentration in Chronic Diseases and Drug Responses
  10. Angiotensin I-Converting Enzyme Gene Polymorphism and Drug Response
  11. Drug-Metabolizing Enzymes, Polymorphisms and Interindividual Response to Environmental Toxicants
  12. Database Analysis and Gene Discovery in Pharmacogenetics
  13. How to Manage Individualized Drug Therapy: Application of Pharmacogenetic Knowledge of Drug Metabolism and Transport
  14. P-Glycoprotein and Bioavailability-Implication of Polymorphism
  15. Cancer Therapy and Polymorphisms of Cytochromes P450
  16. Polymorphisms in UDP Glucuronosyltransferase Genes: Functional Consequences and Clinical Relevance
  17. The Human Multidrug Resistance-Associated Protein (MRP) Gene Family: From Biological Function to Drug Molecular Design
  18. Ethnic Differences in Drug Metabolism
  19. Hypervariable Region 1 of Hepatitis C Virus Genome and Response to Interferon Therapy
  20. A Functional Genomic Study of the Effects of Antipsychotic Agent Chlorpromazine in PC12 Cells
  21. Influence of Glutathione S-Transferase M1 and T1 Genotypes on Larynx Cancer Risk among Korean Smokers
  22. CYP2D6 Genotyping in Patients on Psychoactive Drug Therapy
  23. Genotyping of CYP2D6 in Parkinsons's Disease
  24. Rapid Analysis of CGG Repeat Length in the FMR1 Gene
  25. Multiplex In-cell Reverse Transcription-Polymerase Chain Reaction for the Simultaneous Detection of p210 and p190 BCR-ABL mRNAs in Chronic Myeloid Leukemia and Philadelphia-Positive Acute Lymphoblastic Leukemia Cell Lines
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CCLM.2000.122/html?lang=en
Scroll to top button