Home Medicine Identification of patients with coronary artery disease using magnetocardiographic signal analysis / Identifizierung von Patienten mit koronarer Herzkrankheit anhand magnetokardiographischer Signalanalyse
Article
Licensed
Unlicensed Requires Authentication

Identification of patients with coronary artery disease using magnetocardiographic signal analysis / Identifizierung von Patienten mit koronarer Herzkrankheit anhand magnetokardiographischer Signalanalyse

  • Peter Van Leeuwen , Birgit Hailer , Silke Lange and Dietrich H.W. Grönemeyer
Published/Copyright: August 18, 2006
Biomedical Engineering / Biomedizinische Technik
From the journal Volume 51 Issue 2

Abstract

Introduction: Magnetocardiography (MCG), which measures the magnetic component of the heart's electrical activity, offers an alternative approach for analyzing changes induced by coronary artery disease (CAD). This study examines several parameters that quantify spatial and temporal aspects of cardiac magnetic signals in CAD.

Materials and methods: MCGs were registered at rest in 144 subjects, aged 58.3±9.8 years: 50 healthy subjects, 43 CAD patients without myocardial infarction (MI), 36 with MI, and 15 with spontaneous episodes of ventricular tachycardia (VT). Spatial characteristics of magnetic field maps (MFM), quantified using their centers of gravity, included MFM orientation and trajectory plots. Spatio-temporal analysis was performed by determining the spatial distribution of the QT interval.

Results: In CAD patients, MFM orientation during the QT interval deviated from normal in 67% of patients without MI and in 85% of patients with MI. Trajectory plots deviated from those of the normal group, with deviation increasing with disease severity. Quantifying the distribution of QT interval duration using a smoothness index demonstrated a significant difference between the values for healthy subjects and non-MI patients, as well as MI patients with and without VT (p<0.001).

Conclusion: The results reported demonstrate that disturbances in cardiac electrogenesis resulting from CAD may be assessed using MCG signal analysis.

Zusammenfassung

Einleitung: Magnetokardiographie (MKG) misst die magnetische Komponente der elektrischen Aktivität des Herzens und stellt somit eine alternative Methode zur Analyse der durch die koronare Herzkrankheit (KHK) hervorgerufenen Veränderungen dar. In dieser Studie werden verschiedene Parameter untersucht, welche die räumlichen und zeitlichen Aspekte des kardialen magnetischen Signals bei KHK quantifizieren.

Material und Methode: MKGs wurden in Ruhe bei 144 Personen im Alter von 58,3±9,8 Jahren registriert: 50 gesunde Probanden, 43 KHK Patienten ohne Myokardinfarkt (MI), 36 mit MI, 15 mit spontanen Episoden ventrikulärer Tachykardie (VT). Räumliche Charakteristiken der Magnetfeldkarten (MFM), die über ihre Schwerpunkte quantifiziert wurden, beinhalteten die MFM-Orientierung sowie Trajectory-Plots. Die räumlich-zeitliche Analyse erfolgte unter Verwendung der räumlichen Verteilung des QT-Intervalls.

Ergebnisse: Die MFM-Orientierung der KHK-Patienten differierte im Verlauf des QT-Intervalls bei 67% der Patienten ohne und 85% der Patienten mit MI von den Normalwerten. Trajectory-Plots wichen von denen der Normalgruppe mit steigender Schwere der Erkrankung immer mehr ab. Die Quantifizierung der Verteilung der Dauer des QT-Intervalls mit Hilfe eines Glattheitsindexes führte zu signifikanten Unterschieden zwischen den Werten der Gesunden und der Patienten ohne MI sowie der MI-Patienten mit und ohne VT (p<0,001).

Schlussfolgerung: Die Ergebnisse zeigen, dass Störungen der kardialen Elektrogenese durch KHK mit der MKG-Signalanalyse erfasst werden können.


Corresponding author: Peter Van Leeuwen, PhD, Department of Biomagnetism, Grönemeyer Institute of Microtherapy, Universitätsstr. 142, 44799 Bochum, Germany Phone: +49-234-9780140 Fax: +49-234-9780599

References

1 Adams A, Stroink G, Van Leeuwen P, Hailer B. KLT-analysis of QRST integral magnetic field maps of patients with and without coronary artery disease at rest and during pharmacological stress. In: Yoshimoto T, Kotani M, Kuriki S, Karibe H, Nakasato N, editors. Recent advances in biomagnetism. Sendai: Tohoku University Press 1999: 1014–1017.Search in Google Scholar

2 Chen J, Thomson PD, Nolan V, Clarke J. Age and sex dependent variations in the normal magnetocardiogram compared with changes associated with ischemia. Ann Biomed Eng2004; 32: 1088–1099.10.1114/B:ABME.0000036645.35013.adSearch in Google Scholar

3 Coumel P, Maisonblanche P, Badilini F. Dispersion of ventricular repolarization: reality? illusion? significance? Circulation1998; 97: 2491–2493.10.1161/01.CIR.97.25.2491Search in Google Scholar

4 Cremer P, Van Leeuwen P, Hailer B, Lange S, Grönemeyer D. Changes in magnetic field maps during repolarization in patients with coronary artery disease. Med Biol Eng Comput1999; 37: 1480–1481.Search in Google Scholar

5 Fenici R, Brisinda D, Nenonen J, Makijarvi M, Fenici P. Study of ventricular repolarization in patients with myocardial ischemia, using unshielded multichannel magnetocardiography. In: Nowak H, Haueisen J, Giessler F, Huonker R, editors. Biomag 2002. Proceedings of the 13th International Conference on Biomagnetism. Berlin/Offenbach: VDE Verlag 2002: 520–523.Search in Google Scholar

6 Hailer B, Chaikovsky I, Auth-Eisernitz S, Schäfer H, Van Leeuwen P. The value of magnetocardiography in patients with and without relevant stenoses of the coronary arteries using an unshielded system. PACE2005; 28: 8–16.10.1111/j.1540-8159.2005.09318.xSearch in Google Scholar

7 Hailer B, Van Leeuwen P, Lange S, Wehr M. Value of spatial dispersion of the magnetocardiographically determined QT intervals and its components in the identification of patients at risk for arrhythmia after myocardial infarction. Ann Noninvasive Electrocardiol1998; 3: 311–318.10.1111/j.1542-474X.1998.tb00039.xSearch in Google Scholar

8 Hailer B, Van Leeuwen P, Lange S, Pilath M, Wehr M. Coronary artery disease may alter the spatial dispersion of QT interval at rest. Ann Noninvasive Electrocardiol1999; 4: 267–273.10.1111/j.1542-474X.1999.tb00210.xSearch in Google Scholar

9 Hailer B, Van Leeuwen P, Lange S, Wehr M. Magnetocardiography in risk stratification after myocardial infarction using spatial dispersion of the QT interval. Biomed Tech1997; 42 (Suppl 1): 136–139.Search in Google Scholar

10 Hänninen H, Takala P, Korhonen P, et al. Features of ST segment and T wave in exercise induced myocardial ischemia evaluated with multichannel magnetocardiography. Ann Med2002; 4: 120–129.10.1080/07853890252953518Search in Google Scholar

11 Hänninen H, Takala P, Makijarvi M, et al. Detection of exercise-induced myocardial ischemia by multichannel magnetocardiography in single vessel coronary artery disease. Ann Noninvasive Electrocardiol2000; 5: 147–157.10.1111/j.1542-474X.2000.tb00380.xSearch in Google Scholar

12 Hoffmann R, Lethen H, Kleinhans E, Weiss M, Flachskampf FA, Hanrath P. Comparative evaluation of bicycle and dobutamine stress echocardiography with perfusion scintigraphy and bicycle electrocardiogram for identification of coronary artery disease. Am J Cardiol1993; 72: 555–559.10.1016/0002-9149(93)90351-CSearch in Google Scholar

13 Hren R, Steinhoff U, Gessner C, et al. Value of magnetocardiographic QRST integral maps in the identification of patients at risk of ventricular arrhythmias. PACE1999; 22: 1292–1304.10.1111/j.1540-8159.1999.tb00622.xSearch in Google Scholar PubMed

14 Killmann R, Jaros GG, Wach P, et al. Localisation of myocardial ischaemia from the magnetocardiogram using current density reconstruction method: computer simulation study. Med Biol Eng Comput1995; 33: 643–651.10.1007/BF02510781Search in Google Scholar PubMed

15 Kittnar O, Slavicek J, Vavrova M, et al. Repolarization pattern of body surface potential maps (BSPM) in coronary artery disease. Physiol Res1993; 42: 123–130.Search in Google Scholar

16 Kors JA, van Herpen G, van Bemmel JH. QT dispersion as an attribute of T-loop morphology. Circulation1999; 99: 1458–1463.10.1161/01.CIR.99.11.1458Search in Google Scholar

17 Leder U, Pohl HP, Michaelsen S, et al. Noninvasive biomagnetic imaging in coronary artery disease based on individual current density maps of the heart. Int J Cardiol1998; 64: 83–92.10.1016/S0167-5273(97)00326-4Search in Google Scholar

18 Mirvis DM. Spatial variation of QT intervals in normal persons and patients with acute myocardial infarction. J Am Coll Cardiol1985; 3: 625–631.10.1016/S0735-1097(85)80387-9Search in Google Scholar

19 Oikarinen L, Paavola M, Montonen J, et al. Magnetocardiographic QT interval dispersion in postmyocardial infarction patients with sustained ventricular tachycardia: validation of automated QT measurements. PACE1998; 21: 1934–1942.10.1111/j.1540-8159.1998.tb00013.xSearch in Google Scholar PubMed

20 Park JW, Jung F. Qualitative and quantitative description of myocardial ischemia by means of magnetocardiography. Biomed Tech2004; 49: 267–273.10.1515/BMT.2004.050Search in Google Scholar

21 Rautaharju PM. A farewell to QT dispersion. Are the alternatives any better? J Electrocardiol2005; 38: 7–9.10.1016/j.jelectrocard.2004.09.017Search in Google Scholar PubMed

22 Stroink G. Cardiomagnetic imaging. In: Zaret BL, Kaufmann L, Berson AS, Dunn RA, editors. Frontiers in cardiovascular imaging. New York: Raven Press 1993: 161–177.Search in Google Scholar

23 Stroink G, Meeder RJ, Elliott P, Lant J, Gardner MJ. Arrhythmia vulnerability assessment using magnetic field maps and body surface potential maps. PACE1999; 22: 1718–1728.10.1111/j.1540-8159.1999.tb00403.xSearch in Google Scholar PubMed

24 Takala P, Hänninen H, Montonen J, et al. Beat-to-beat analysis method for magnetocardiographic recordings during interventions. Phys Med Biol2001; 46: 975–982.10.1088/0031-9155/46/4/305Search in Google Scholar PubMed

25 Takala P, Hänninen H, Montonen J, et al. Heart rate adjustment of magnetic field map rotation in detection of myocardial ischemia in exercise magnetocardiography. Basic Res Cardiol2002; 97: 88–96.10.1007/s395-002-8391-ySearch in Google Scholar PubMed

26 Van Leeuwen P, Hailer B, Lange S, Donker D, Grönemeyer D. Spatial and temporal changes during the QT-interval in the magnetic field of patients with coronary artery disease. Biomed Tech1999; 44 (Suppl 2): 139–142.10.1515/bmte.1999.44.s2.139Search in Google Scholar

27 Van Leeuwen P, Hailer B, Lange S, Grönemeyer D. Spatial distribution of repolarization times in patients with coronary artery disease. PACE2003; 26: 1706–1714.10.1046/j.1460-9592.2003.t01-1-00256.xSearch in Google Scholar PubMed

28 Van Leeuwen P, Hailer B, Wehr M. Changes in current dipole parameters in patients with coronary artery disease with and without myocardial infarction. Biomed Tech1997; 42 (Suppl 1): 132–135.Search in Google Scholar

29 Van Leeuwen P, Hailer B, Wehr M. Spatial distribution of QT-intervals: an alternative approach to QT dispersion. PACE1996; 19: 1894–1899.10.1111/j.1540-8159.1996.tb03248.xSearch in Google Scholar PubMed

30 Zabel M, Klingenheben T, Franz M, Hohnloser R. Assessment of QT dispersion for prediction of mortality or arrhythmic events after myocardial infarction: results of a prospective, long-term follow-up study. Circulation1998; 97: 2543–2550.10.1161/01.CIR.97.25.2543Search in Google Scholar

Published Online: 2006-08-18
Published in Print: 2006-07-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Biosignal Processing: the pacemaker for innovations in Biomedical Engineering – state, developments, trends
  2. Analysis of complex physiological systems by information flow: a time scale-specific complexity assessment / Analyse komplexer physiologischer Systeme mit Hilfe des Informationsflusses über spezielle Zeitskalen
  3. Robust filters for intensive care monitoring: beyond the running median / Robuste Filter für intensivmedizinisches Monitoring: mehr als ein gleitender Median
  4. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation / Brain-Computer Interfaces zur Steuerung von Neuroprothesen: von der synchronen zur asynchronen Funktionsweise
  5. Development of interaction measures based on adaptive non-linear time series analysis of biomedical signals / Entwicklung von Interaktionsmaßen auf der Grundlage adaptiver, nichtlinearer Zeitreihenanalyse von biomedizinischen Signalen
  6. Comparison of three methods for beat-to-beat-interval extraction from continuous blood pressure and electrocardiogram with respect to heart rate variability analysis / Vergleich von drei Methoden der Schlag-zu-Schlag-Intervall-Extraktion aus kontinuierlichen Blutdruckverläufen und Elektrokardiogrammen zur Herzratenvariabilitätsanalyse
  7. Compression entropy contributes to risk stratification in patients with cardiomyopathy / Kompressionsentropie zur verbesserten Risikostratifizierung bei Patienten mit DCM
  8. Identification of patients with coronary artery disease using magnetocardiographic signal analysis / Identifizierung von Patienten mit koronarer Herzkrankheit anhand magnetokardiographischer Signalanalyse
  9. EEG parameters and their combination as indicators of depth of anaesthesia / EEG-Parameter und deren Kombination für das Narkosemonitoring
  10. Oberflächenkonditionierung für eine verbesserte Überlebenswahrscheinlichkeit von Knieprothesen: Komplett- vs. Oberflächenzementiertechnik der Tibiakomponente / Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique
  11. Die Bedeutung der Setzkraft für die Sicherheit einer Konuskopplung von Hüftstiel und keramischem Prothesenkopf / Relevance of the insertion force for the taper lock reliability of a hip stem and a ceramic femoral head
Downloaded on 14.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/BMT.2006.015/html
Scroll to top button