Abstract
The transporter associated with antigen processing-like (TAPL) is a polypeptide transporter translocating cytosolic peptides into the lumen of lysosomes driven by ATP hydrolysis. TAPL belongs to the family of ABC transporters and forms a homodimer. This ABC transporter not only shows a broad tissue but also a wide phylogenetic distribution, because orthologs are still found in nematodes and insects. Here, we present the topology, substrate specificity, and distribution of this intracellular polypeptide transporter. Additionally, we will discuss its proposed physiological functions such as housekeeping together with a specialized factor for metabolite storage as well as for the adaptive immunity.
©2011 by Walter de Gruyter Berlin New York
Artikel in diesem Heft
- Publisher’s Note
- Publisher’s Note
- Guest Editorial
- Highlight: Membrane transport in light of structure, function, and evolution
- HIGHLIGHT: MEMBRANE TRANSPORT IN LIGHT OF STRUCTURE, FUNCTION, AND EVOLUTION
- Pathways of transport protein evolution: recent advances
- Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts
- Omp85 in eukaryotic systems: one protein family with distinct functions
- Evolution of ABC transporters by gene duplication and their role in human disease
- A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport
- The multidrug transporter Pdr5: a molecular diode?
- The lysosomal polypeptide transporter TAPL: more than a housekeeping factor?
- Pumping lipids with P4-ATPases
- Transporters, Trojan horses and therapeutics: suitability of bile acid and peptide transporters for drug delivery
- Substrate recognition and translocation by polyspecific organic cation transporters
- The ugly side of amphetamines: short- and long-term toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’), methamphetamine and d-amphetamine
- SLC22 transporter family proteins as targets for cytostatic uptake into tumor cells
- Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells
- Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases
- Structure determination of channel and transport proteins by high-resolution microscopy techniques
Artikel in diesem Heft
- Publisher’s Note
- Publisher’s Note
- Guest Editorial
- Highlight: Membrane transport in light of structure, function, and evolution
- HIGHLIGHT: MEMBRANE TRANSPORT IN LIGHT OF STRUCTURE, FUNCTION, AND EVOLUTION
- Pathways of transport protein evolution: recent advances
- Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts
- Omp85 in eukaryotic systems: one protein family with distinct functions
- Evolution of ABC transporters by gene duplication and their role in human disease
- A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport
- The multidrug transporter Pdr5: a molecular diode?
- The lysosomal polypeptide transporter TAPL: more than a housekeeping factor?
- Pumping lipids with P4-ATPases
- Transporters, Trojan horses and therapeutics: suitability of bile acid and peptide transporters for drug delivery
- Substrate recognition and translocation by polyspecific organic cation transporters
- The ugly side of amphetamines: short- and long-term toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’), methamphetamine and d-amphetamine
- SLC22 transporter family proteins as targets for cytostatic uptake into tumor cells
- Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells
- Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases
- Structure determination of channel and transport proteins by high-resolution microscopy techniques