Ultrafast memory loss and relaxation processes in hydrogen-bonded systems
-
Thomas Elsaesser
Abstract
Structural memory of aqueous systems, such as neat water and biomolecules, in an aqueous environment is strongly influenced by hydrogen bond dynamics. Vibrational spectroscopy in the femtosecond (fs) time domain is applied to map structural dynamics in real-time and identify underlying molecular interactions. Neat liquid water displays an ultrafast loss of structural memory with the fastest decay of structural correlations occurring in the sub-100 fs regime. Both OH stretching and bending excitations of water molecules decay on a subpicosecond time scale, followed by dissipation of excess energy in the hydrogen bond network within a few picoseconds. Water shells around fully hydrated DNA show similar although slightly slower dynamics. A detailed study of hydration shells around ionic phosphate groups in the DNA backbone demonstrates a strong phosphate-water coupling and a subpicosecond rearrangement of hydrogen bonds upon energy disposal. Hydration shells serve as primary heat sinks for excess energy.
©2009 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Editorial
- Highlight: Molecular and Cellular Mechanisms of Memory
- Highlight: 60th Mosbach Colloquium of the GBM ‘Molecular and Cellular Mechanisms of Memory’
- Protein carboxyl methylation and the biochemistry of memory
- Chemotaxis: how bacteria use memory
- Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACα)
- Balance of power – dynamic regulation of chromatin in plant development
- Ultrafast memory loss and relaxation processes in hydrogen-bonded systems
- Memory and neural networks on the basis of color centers in solids
- Dissection of gene regulatory networks in embryonic stem cells by means of high-throughput sequencing
- The epigenetic bottleneck of neurodegenerative and psychiatric diseases
- Protein Structure and Function
- Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+
- Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation
- Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg257/Lys260, and unmasking of acid-base catalysis
- Genes and Nucleic Acids
- CA/C1 peptidases of the malaria parasites Plasmodium falciparum and P. berghei and their mammalian hosts – a bioinformatical analysis
- Proteolysis
- Placental expression of proteases and their inhibitors in patients with HELLP syndrome
- Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds
Articles in the same Issue
- Editorial
- Highlight: Molecular and Cellular Mechanisms of Memory
- Highlight: 60th Mosbach Colloquium of the GBM ‘Molecular and Cellular Mechanisms of Memory’
- Protein carboxyl methylation and the biochemistry of memory
- Chemotaxis: how bacteria use memory
- Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACα)
- Balance of power – dynamic regulation of chromatin in plant development
- Ultrafast memory loss and relaxation processes in hydrogen-bonded systems
- Memory and neural networks on the basis of color centers in solids
- Dissection of gene regulatory networks in embryonic stem cells by means of high-throughput sequencing
- The epigenetic bottleneck of neurodegenerative and psychiatric diseases
- Protein Structure and Function
- Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+
- Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation
- Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg257/Lys260, and unmasking of acid-base catalysis
- Genes and Nucleic Acids
- CA/C1 peptidases of the malaria parasites Plasmodium falciparum and P. berghei and their mammalian hosts – a bioinformatical analysis
- Proteolysis
- Placental expression of proteases and their inhibitors in patients with HELLP syndrome
- Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds