Ancestral vascular tube formation and its adoption by tumors
-
Tomáš Kučera
and Eckhard Lammert
Abstract
Similar to growing and metabolically active tissues, tumors require a dense vasculature to gain access to oxygen and nutrients. However, blood vessels in tumors differ from vessels in normal tissues in many respects. In particular, the tumor vasculature is in an active state of angiogenesis or vasculogenesis, and it is immature and leaky. Blood vessels are multicellular tubes formed by polarized endothelial cells, which face the patent vascular lumen with their apical cell surface, whereas their basal cell surface faces extracellular matrix on the outside of the vessels. The same cell polarity can be found in other tubular structures, such as in the bronchial tubes of the lung or the kidney tubules. In contrast, blood vessels in invertebrates often have a vascular lumen lined by basal cell surfaces. These vessels are often formed by a process named ‘ancestral vascular tube formation’. Here, we discuss the hypothesis that the supply of tumors with blood can be achieved by both endothelial cell-lined tubes as well as tubes formed by the tumor cells themselves using the ancestral vascular tube formation mechanism. We discuss this hypothesis with a particular focus on gastrointestinal tumors.
©2009 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Guest Editorial
- Highlight: ‘Regenerative Hepatology’
- Highlight: Regenerative Hepatology
- The do's and don'ts of p53 isoforms
- Mechanisms of liver disease: cross-talk between the NF-κB and JNK pathways
- Immunologic hurdles of therapeutic stem cell transplantation
- Ancestral vascular tube formation and its adoption by tumors
- Cellular plasticity of the pancreas
- Hepatic and pancreatic stellate cells in focus
- Interplay between host cell and hepatitis C virus in regulating viral replication
- Epidermal growth factor receptor signaling in liver cell proliferation and apoptosis
- The chemokine scavenging receptor D6 limits acute toxic liver injury in vivo
- Hepatic differentiation of pluripotent stem cells
- Protein Structure and Function
- Effect of curcumin on amyloidogenic property of molten globule-like intermediate state of 2,5-diketo-d-gluconate reductase A
- Cell Biology and Signaling
- Specific induction of migration and invasion of pancreatic carcinoma cells by RhoC, which differs from RhoA in its localisation and activity
- Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation
Articles in the same Issue
- Guest Editorial
- Highlight: ‘Regenerative Hepatology’
- Highlight: Regenerative Hepatology
- The do's and don'ts of p53 isoforms
- Mechanisms of liver disease: cross-talk between the NF-κB and JNK pathways
- Immunologic hurdles of therapeutic stem cell transplantation
- Ancestral vascular tube formation and its adoption by tumors
- Cellular plasticity of the pancreas
- Hepatic and pancreatic stellate cells in focus
- Interplay between host cell and hepatitis C virus in regulating viral replication
- Epidermal growth factor receptor signaling in liver cell proliferation and apoptosis
- The chemokine scavenging receptor D6 limits acute toxic liver injury in vivo
- Hepatic differentiation of pluripotent stem cells
- Protein Structure and Function
- Effect of curcumin on amyloidogenic property of molten globule-like intermediate state of 2,5-diketo-d-gluconate reductase A
- Cell Biology and Signaling
- Specific induction of migration and invasion of pancreatic carcinoma cells by RhoC, which differs from RhoA in its localisation and activity
- Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation