Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+
-
Yan Ren
Abstract
Saccharomyces cerevisiae calcineurin (CN) consists of a catalytic subunit CNA1 or CNA2 and a regulatory subunit CNB1. The kinetics of activation of yeast CN holoenzymes and their catalytic domains by Mn2+ were investigated. We report that the in vitro phosphatase reaction activated by Mn2+ typically has a pronounced initial lag phase caused by slow conformational rearrangement of the holoenzyme-Mn2+. A similar lag phase was detected using just the catalytic domain of yeast CN, indicating that the slowness of Mn2+-induced conformational change of CN results from a rearrangement within the catalytic domain. The Mn2+-activation of CN was reversible. The dissociation constant of the CN heterodimer containing the CNA2 subunit in the presence of Mn2+ was 3-fold higher than that of CN containing the CNA1 subunit and that of the catalytic domains of CNA1 and CNA2, pointing to differences between the residues surrounding the Mn2+-binding sites of CNA1 and CNA2.
©2009 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Editorial
- Highlight: Molecular and Cellular Mechanisms of Memory
- Highlight: 60th Mosbach Colloquium of the GBM ‘Molecular and Cellular Mechanisms of Memory’
- Protein carboxyl methylation and the biochemistry of memory
- Chemotaxis: how bacteria use memory
- Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACα)
- Balance of power – dynamic regulation of chromatin in plant development
- Ultrafast memory loss and relaxation processes in hydrogen-bonded systems
- Memory and neural networks on the basis of color centers in solids
- Dissection of gene regulatory networks in embryonic stem cells by means of high-throughput sequencing
- The epigenetic bottleneck of neurodegenerative and psychiatric diseases
- Protein Structure and Function
- Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+
- Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation
- Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg257/Lys260, and unmasking of acid-base catalysis
- Genes and Nucleic Acids
- CA/C1 peptidases of the malaria parasites Plasmodium falciparum and P. berghei and their mammalian hosts – a bioinformatical analysis
- Proteolysis
- Placental expression of proteases and their inhibitors in patients with HELLP syndrome
- Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds
Articles in the same Issue
- Editorial
- Highlight: Molecular and Cellular Mechanisms of Memory
- Highlight: 60th Mosbach Colloquium of the GBM ‘Molecular and Cellular Mechanisms of Memory’
- Protein carboxyl methylation and the biochemistry of memory
- Chemotaxis: how bacteria use memory
- Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACα)
- Balance of power – dynamic regulation of chromatin in plant development
- Ultrafast memory loss and relaxation processes in hydrogen-bonded systems
- Memory and neural networks on the basis of color centers in solids
- Dissection of gene regulatory networks in embryonic stem cells by means of high-throughput sequencing
- The epigenetic bottleneck of neurodegenerative and psychiatric diseases
- Protein Structure and Function
- Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+
- Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation
- Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg257/Lys260, and unmasking of acid-base catalysis
- Genes and Nucleic Acids
- CA/C1 peptidases of the malaria parasites Plasmodium falciparum and P. berghei and their mammalian hosts – a bioinformatical analysis
- Proteolysis
- Placental expression of proteases and their inhibitors in patients with HELLP syndrome
- Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds