Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
The ADP-ribosylating thermozyme from Sulfolobus solfataricus is a DING protein
-
Antimo Di Maro
, Anna De Maio , Sabrina Castellano , Augusto Parente , Benedetta Farina und Maria Rosaria Faraone-Mennella
Veröffentlicht/Copyright:
13. November 2008
Abstract
The partial amino acid sequence of the sulfolobal thermoprotein biochemically characterized as poly(ADP-ribose)polymerase-like enzyme overlaps those of DING proteins. This group of proteins, widely occurring in animals, plants and eubacteria, shows a characteristic and highly conserved N-terminus, DINGGGATL. The sequence of the N-terminal region and of the analyzed tryptic peptides of the sulfolobal thermozyme shows a high similarity with most of the DING proteins from databases. This is the first example of a DING protein from a sulfolobal source.
Keywords: archaeon; Edman degradation; DING protein; poly(ADP-ribose) polymerase; Sulfolobus solfataricus; thermoprotein
Received: 2008-7-15
Accepted: 2008-9-29
Published Online: 2008-11-13
Published in Print: 2009-01-01
©2009 by Walter de Gruyter Berlin New York
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Editor's Note
- Editor's Note
- Protein Structure and Function
- Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence
- Biochemical characterization of the catalytic domains of three different clostridial collagenases
- Impact of detergents on the activity of acetylcholinesterase and on the effectiveness of its inhibitors
- The ADP-ribosylating thermozyme from Sulfolobus solfataricus is a DING protein
- Membranes, Lipids, Glycobiology
- Glycosphingolipids from bovine milk and milk fat globule membranes: a comparative study. Adhesion to enterotoxigenic Escherichia coli strains
- Mannose 6-phosphate receptor-dependent endocytosis of lysosomal enzymes is increased in sulfatide-storing kidney cells
- Cell Biology and Signaling
- Heavy metals induce phosphorylation of the Bcl-2 protein by Jun N-terminal kinase
- Fibroblast growth factor 2 (FGF-2) is a novel substrate for arginine methylation by PRMT5
- Differential functions of the Apoer2 intracellular domain in selenium uptake and cell signaling
- Active immunisation against gastric inhibitory polypeptide (GIP) improves blood glucose control in an animal model of obesity-diabetes
- Novel Techniques
- Applicability of superfolder YFP bimolecular fluorescence complementation in vitro
Schlagwörter für diesen Artikel
archaeon;
Edman degradation;
DING protein;
poly(ADP-ribose) polymerase;
Sulfolobus solfataricus;
thermoprotein
Artikel in diesem Heft
- Editor's Note
- Editor's Note
- Protein Structure and Function
- Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence
- Biochemical characterization of the catalytic domains of three different clostridial collagenases
- Impact of detergents on the activity of acetylcholinesterase and on the effectiveness of its inhibitors
- The ADP-ribosylating thermozyme from Sulfolobus solfataricus is a DING protein
- Membranes, Lipids, Glycobiology
- Glycosphingolipids from bovine milk and milk fat globule membranes: a comparative study. Adhesion to enterotoxigenic Escherichia coli strains
- Mannose 6-phosphate receptor-dependent endocytosis of lysosomal enzymes is increased in sulfatide-storing kidney cells
- Cell Biology and Signaling
- Heavy metals induce phosphorylation of the Bcl-2 protein by Jun N-terminal kinase
- Fibroblast growth factor 2 (FGF-2) is a novel substrate for arginine methylation by PRMT5
- Differential functions of the Apoer2 intracellular domain in selenium uptake and cell signaling
- Active immunisation against gastric inhibitory polypeptide (GIP) improves blood glucose control in an animal model of obesity-diabetes
- Novel Techniques
- Applicability of superfolder YFP bimolecular fluorescence complementation in vitro