Contribution of the C30/C75 disulfide bond to the biological properties of onconase
-
Gerard Torrent
Abstract
Onconase, a member of the pancreatic type ribonuclease family, is currently used as a chemotherapeutic agent for the treatment of different types of cancer. It is widely accepted that one of the properties that renders this enzyme cytotoxic is its ability to evade the cytosolic ribonuclease inhibitor (RI). In the present work, we produced and characterized an onconase variant that lacks the disulfide bond C30/C75. This variant mimics the stable unfolding intermediate des(30–75) produced in the reductive unfolding pathway of onconase. We found that the reduction of the C30/C75 disulfide bond does not significantly alter the cytotoxic properties of onconase, although the variant possesses a notably reduced conformational stability. Interestingly, both its catalytic activity and its ability to evade RI are comparable to wild-type onconase under mild reductive conditions in which the three disulfide containing intermediate des(30–75) is present. These results suggest that the C30/C75 disulfide bond could easily be reduced under physiological redox conditions.
©2008 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Editors' Note
- Editors' Note
- Editorial
- Farewell to Hans Fritz, Executive Editor
- Guest Editorial
- Highlight on Advances in Proteolysis Research
- Highlight: 5th General Meeting of the International Proteolysis Society 2007
- Proteinases as hormones: targets and mechanisms for proteolytic signaling
- Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution
- Alternative pathways for production of β-amyloid peptides of Alzheimer's disease
- Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties
- Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzi cysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway
- How Na+ activates thrombin – a review of the functional and structural data
- Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle
- Isoaspartate residues dramatically influence substrate recognition and turnover by proteases
- Isoaspartate-containing amyloid precursor protein-derived peptides alter efficacy and specificity of potential β-secretases
- Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model
- Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17
- Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments
- Substrate specificity determination of mouse implantation serine proteinase and human kallikrein-related peptidase 6 by phage display
- In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells
- Human monocytes augment invasiveness and proteolytic activity of inflammatory breast cancer
- Regulation of cathepsin K activity by hydrogen peroxide
- Protein Structure and Function
- Contribution of the C30/C75 disulfide bond to the biological properties of onconase
- Conformational changes in bovine lactoferrin induced by slow or fast temperature increases
Articles in the same Issue
- Editors' Note
- Editors' Note
- Editorial
- Farewell to Hans Fritz, Executive Editor
- Guest Editorial
- Highlight on Advances in Proteolysis Research
- Highlight: 5th General Meeting of the International Proteolysis Society 2007
- Proteinases as hormones: targets and mechanisms for proteolytic signaling
- Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution
- Alternative pathways for production of β-amyloid peptides of Alzheimer's disease
- Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties
- Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzi cysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway
- How Na+ activates thrombin – a review of the functional and structural data
- Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle
- Isoaspartate residues dramatically influence substrate recognition and turnover by proteases
- Isoaspartate-containing amyloid precursor protein-derived peptides alter efficacy and specificity of potential β-secretases
- Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model
- Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17
- Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments
- Substrate specificity determination of mouse implantation serine proteinase and human kallikrein-related peptidase 6 by phage display
- In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells
- Human monocytes augment invasiveness and proteolytic activity of inflammatory breast cancer
- Regulation of cathepsin K activity by hydrogen peroxide
- Protein Structure and Function
- Contribution of the C30/C75 disulfide bond to the biological properties of onconase
- Conformational changes in bovine lactoferrin induced by slow or fast temperature increases