Regulation of cathepsin K activity by hydrogen peroxide
-
Emmanuel Godat
Abstract
Although cysteine cathepsins, including cathepsin K, are sensitive to oxidation, proteolytically active forms are found at inflammatory sites. Regulation of cathepsin K activity was analyzed in the presence of H2O2 to gain an insight into these puzzling observations. H2O2 impaired processing of procathepsin K and inactivated its mature form in a time- and dose-dependent mode. However, as a result of the formation of a sulfenic acid, as confirmed by trapping in the presence of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol, approximately one-third of its initial activity was restored by dithiothreitol. This incomplete inactivation may partially explain why active cysteine cathepsins are still found during acute lung inflammation.
©2008 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Editors' Note
- Editors' Note
- Editorial
- Farewell to Hans Fritz, Executive Editor
- Guest Editorial
- Highlight on Advances in Proteolysis Research
- Highlight: 5th General Meeting of the International Proteolysis Society 2007
- Proteinases as hormones: targets and mechanisms for proteolytic signaling
- Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution
- Alternative pathways for production of β-amyloid peptides of Alzheimer's disease
- Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties
- Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzi cysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway
- How Na+ activates thrombin – a review of the functional and structural data
- Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle
- Isoaspartate residues dramatically influence substrate recognition and turnover by proteases
- Isoaspartate-containing amyloid precursor protein-derived peptides alter efficacy and specificity of potential β-secretases
- Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model
- Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17
- Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments
- Substrate specificity determination of mouse implantation serine proteinase and human kallikrein-related peptidase 6 by phage display
- In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells
- Human monocytes augment invasiveness and proteolytic activity of inflammatory breast cancer
- Regulation of cathepsin K activity by hydrogen peroxide
- Protein Structure and Function
- Contribution of the C30/C75 disulfide bond to the biological properties of onconase
- Conformational changes in bovine lactoferrin induced by slow or fast temperature increases
Articles in the same Issue
- Editors' Note
- Editors' Note
- Editorial
- Farewell to Hans Fritz, Executive Editor
- Guest Editorial
- Highlight on Advances in Proteolysis Research
- Highlight: 5th General Meeting of the International Proteolysis Society 2007
- Proteinases as hormones: targets and mechanisms for proteolytic signaling
- Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution
- Alternative pathways for production of β-amyloid peptides of Alzheimer's disease
- Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties
- Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzi cysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway
- How Na+ activates thrombin – a review of the functional and structural data
- Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle
- Isoaspartate residues dramatically influence substrate recognition and turnover by proteases
- Isoaspartate-containing amyloid precursor protein-derived peptides alter efficacy and specificity of potential β-secretases
- Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model
- Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17
- Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments
- Substrate specificity determination of mouse implantation serine proteinase and human kallikrein-related peptidase 6 by phage display
- In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells
- Human monocytes augment invasiveness and proteolytic activity of inflammatory breast cancer
- Regulation of cathepsin K activity by hydrogen peroxide
- Protein Structure and Function
- Contribution of the C30/C75 disulfide bond to the biological properties of onconase
- Conformational changes in bovine lactoferrin induced by slow or fast temperature increases