Lipopolysaccharide: a tool and target in enterobacterial vaccine development
-
Gábor Nagy
and Tibor Pál
Abstract
Lipopolysaccharide (LPS) is an essential component of Gram-negative bacteria. While mutants exhibiting truncated LPS molecules are usually over-attenuated, alternative approaches that affect the extent or timing of LPS expression, as well as its modification may establish the optimal balance for a live vaccine strain of sufficient attenuation and retained immunogenicity. On the other hand, a specific immune response to LPS molecules in itself is capable of conferring protective immunity to certain enterobacterial pathogens. Therefore, purified LPS derivatives could be used as parenteral vaccines. This review summarizes various LPS-based vaccination strategies, as well as approaches that utilize LPS mutants as whole-cell vaccines.
©2008 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Guest Editorial
- Novel paradigms in vaccine development: from small pox eradication to therapeutic vaccines
- Highlight: 3rd Semmering Conference 2007
- Adaptive immune responses to hepatitis C virus: from viral immunobiology to a vaccine
- Dendritic cell subtypes as primary targets of vaccines: the emerging role and cross-talk of pattern recognition receptors
- Novel strategies to identify biomarkers in tuberculosis
- Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection
- Lipopolysaccharide: a tool and target in enterobacterial vaccine development
- The coming of age of virus-like particle vaccines
- Maintenance of serological memory
- Adjuvant activity of type I interferons
- Japanese encephalitis vaccines – needs, flaws and achievements
- Analysis of the human cytomegalovirus pp65-directed T-cell response in healthy HLA-A2-positive individuals
- Non-regulatory CD8+CD45RO+CD25+ T-lymphocytes may compensate for the loss of antigen-inexperienced CD8+CD45RA+ T-cells in old age
- Pre-clinical development of cell culture (Vero)-derived H5N1 pandemic vaccines
- Construction of an encapsulated ESAT-6-based anti-TB DNA vaccine and evaluation of its immunogenic properties
- Review
- RNA switches regulate initiation of translation in bacteria
- Protein Structure and Function
- Inhibition of bacterial oxidases by formamide and analogs
- Modeling of variant copies of subunit D1 in the structure of photosystem II from Thermosynechococcus elongatus
Articles in the same Issue
- Guest Editorial
- Novel paradigms in vaccine development: from small pox eradication to therapeutic vaccines
- Highlight: 3rd Semmering Conference 2007
- Adaptive immune responses to hepatitis C virus: from viral immunobiology to a vaccine
- Dendritic cell subtypes as primary targets of vaccines: the emerging role and cross-talk of pattern recognition receptors
- Novel strategies to identify biomarkers in tuberculosis
- Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection
- Lipopolysaccharide: a tool and target in enterobacterial vaccine development
- The coming of age of virus-like particle vaccines
- Maintenance of serological memory
- Adjuvant activity of type I interferons
- Japanese encephalitis vaccines – needs, flaws and achievements
- Analysis of the human cytomegalovirus pp65-directed T-cell response in healthy HLA-A2-positive individuals
- Non-regulatory CD8+CD45RO+CD25+ T-lymphocytes may compensate for the loss of antigen-inexperienced CD8+CD45RA+ T-cells in old age
- Pre-clinical development of cell culture (Vero)-derived H5N1 pandemic vaccines
- Construction of an encapsulated ESAT-6-based anti-TB DNA vaccine and evaluation of its immunogenic properties
- Review
- RNA switches regulate initiation of translation in bacteria
- Protein Structure and Function
- Inhibition of bacterial oxidases by formamide and analogs
- Modeling of variant copies of subunit D1 in the structure of photosystem II from Thermosynechococcus elongatus