Home The NC1 dimer of human placental basement membrane collagen IV: does a covalent crosslink exist?
Article
Licensed
Unlicensed Requires Authentication

The NC1 dimer of human placental basement membrane collagen IV: does a covalent crosslink exist?

  • Manuel E. Than , Gleb P. Bourenkov , Stefan Henrich , Karlheinz Mann and Wolfram Bode
Published/Copyright: September 6, 2005
Biological Chemistry
From the journal Volume 386 Issue 8

Abstract

Triple-helical collagen IV protomers associate through their N- and C-termini, forming a three-dimensional network that provides basement membranes with mechanical strength. Within this network, the C-terminal non-collagenous (NC1) domains form tight dimeric junctions. Crystallographic analyses of isolated NC1 domains show two trimeric cap-like structures interacting via a large interface. Previously, for NC1 from human placenta type-IV collagen we described covalent α1-α1 and α2-α2 crosslinks between Met93 and Lys211 of opposing α1(IV) and α2(IV) NC1-chains, which further stabilize this interface and explain the occurrence of reduction-insensitive NC1-chain dimers. However, their existence was recently questioned, and we therefore analyzed NC1-domain dimers in more detail by biochemical and protein crystallographic methods. Short-exposure diffraction data show a clear electron density cross-connecting the respective residues, which gradually disappears with prolonged crystal irradiation. Sequence analyses of isolated tryptic peptides derived from denatured NC1 monomers and dimers indicate that only the dimers, but not the monomers, yield these chemically labile cross-linked peptides. These data clearly demonstrate the presence of reduction-resistant, but chemically and radiation-sensitive covalent crosslinks between the side chains of Met93 and Lys211 in human placenta type-IV collagen.

:

Corresponding author

References

Borza, D.B., Bondar, O., Ninomiya, Y., Sado, Y., Naito, I., Todd, P., and Hudson, B.G. (2001). The NC1 domain of collagen IV encodes a novel network composed of the α1, α2, α5, and α6 chains in smooth muscle basement membranes. J. Biol. Chem.276, 28532–28540.10.1074/jbc.M103690200Search in Google Scholar

Boutaud, A., Borza, D.B., Bondar, O., Gunwar, S., Netzer, K.O., Singh, N., Ninomiya, Y, Sado, Y., Noelken, M.E., and Hudson, B.G. (2000). Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J. Biol. Chem.275, 30716–30724.10.1074/jbc.M004569200Search in Google Scholar

Burmeister, W.P. (2000). Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallogr.D56, 328–341.10.1107/S0907444999016261Search in Google Scholar

Collaborative Computational Project Number 4 (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763.10.1107/S0907444994003112Search in Google Scholar

Esnouf, R.M. (1999). Further additions to Molscript version 1.4, including reading and contouring of electron density maps. Acta Crystallogr.D55, 938–940.Search in Google Scholar

Fowler, S.J., Jose, S., Zhang, X., Deutzmann, R., Sarras, M.P. Jr., and Boot-Handford, R.P. (2000). Characterization of Hydra type IV collagen. J. Biol. Chem.275, 39589–39599.10.1074/jbc.M005871200Search in Google Scholar

Gunčar, G., Podobnik, M., Pungerčar, J., Štrukelj, B., Turk, V., and Turk, D. (1998). Crystal structure of porcine cathepsin H determined at 2.1 Å resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure15, 51–61.Search in Google Scholar

Hudson, B.G., Reeders, S.T., and Tryggvason, K. (1993). Type IV collagen: structure, gene organization, and role in human diseases. J. Biol. Chem.268, 26033–26036.10.1016/S0021-9258(19)74270-7Search in Google Scholar

Hudson, B.G., Tryggvason, K., Sundaramoorthy, M., and Neilson, E.G. (2003). Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N. Engl. J. Med.348, 2543–2555.10.1056/NEJMra022296Search in Google Scholar PubMed

Kalluri, R. (2003). Basement membranes: structure, assembly and role in tumor angiogenesis. Nat. Rev. Cancer3, 422–433.10.1038/nrc1094Search in Google Scholar PubMed

Kühn, K. (1994). Basement membrane (type IV) collagen. Matrix Biol.14, 439–445.Search in Google Scholar

Kraulis, P.J. (1991). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr.24, 946–950.10.1107/S0021889891004399Search in Google Scholar

Mann, K., Gaill, F., and Timpl, R. (1992). Amino acid sequence and cell-adhesion activity of a fibril-forming collagen from the tube worm Riftia pachyptila living at deep sea hydrothermal vents. Eur. J. Biochem.210, 839–847.10.1111/j.1432-1033.1992.tb17487.xSearch in Google Scholar PubMed

Merrit, E.A. and Bacon, D.J. (1997). Raster3D: photorealistic molecular graphics. Methods Enzymol.277, 505–524.10.1016/S0076-6879(97)77028-9Search in Google Scholar

Otwinowski, Z. and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillations mode. Methods Enzymol.276, 307–326.10.1016/S0076-6879(97)76066-XSearch in Google Scholar

Petitclerc, E., Boutaud, A., Prestayko, A., Xu, J., Sado, Y., Ninomiya, Y., Sarras, M.P. Jr, Hudson, B.G., and Brooks, P.C. (2000). New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J. Biol. Chem.275, 8051–8061.10.1074/jbc.275.11.8051Search in Google Scholar

Ravelli, R.B.G. and McSweeney S.M. (2000). The ‘fingerprint’ that X-rays can leave on structures. Structure8, 315–328.10.1016/S0969-2126(00)00109-XSearch in Google Scholar

Ries, A., Engel, J., Lustig, A., and Kühn, K. (1995). The function of the NC1 domains in type IV collagen. J. Biol. Chem.270, 23790–23794.10.1074/jbc.270.40.23790Search in Google Scholar PubMed

Siebold, B., Deutzmann, R., and Kühn, K. (1988). The arrangement of intra- and intermolecular disulfide bonds in the carboxyterminal, non-collagenous aggregation and cross-linking domain of basement-membrane type IV collagen. Eur. J. Biochem.176, 617–624.10.1111/j.1432-1033.1988.tb14321.xSearch in Google Scholar PubMed

Sundaramoorthy, M., Meiyappan, M., Todd, P., and Hudson, B.G. (2002). Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J. Biol. Chem.277, 31142–31153.10.1074/jbc.M201740200Search in Google Scholar PubMed

Than, M.E., Henrich, S., Huber, R., Ries, A., Mann, K., Kühn, K., Timpl, R., Bourenkov, G.P., Bartunik, H.D., and Bode, W. (2002). The 1.9-Å crystal structure of the noncollagenous (NC1) domain of human placenta collagen IV shows stabilization via a novel type of covalent Met-Lys cross-link. Proc. Natl. Acad. Sci. USA99, 6607–6612.Search in Google Scholar

Turk, D. (1992). Weiterentwicklung eines Programms für Molekülgraphik und Elektrondichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen. PhD thesis, Technische Universität München, Germany.Search in Google Scholar

Vanacore, R.M., Shanmugasundararaj, S., Friedman, D.B., Bondar, O., Hudson, B.G., and Sundaramoorthy, M. (2004). The α1α2 network of collagen IV: reinforced stabilization of the noncollagenous domain-1 by noncovalent forces and the absence of Met-Lys crosslinks. J. Biol. Chem.279, 44723–44730.10.1074/jbc.M406344200Search in Google Scholar PubMed

Weber, S., Engel, J., Wiedemann, H., Glanville, R.W., and Timpl, R. (1984). Subunit structure and assembly of globular domain of basement-membrane collagen type IV. Eur. J. Biochem.139, 401–410.10.1111/j.1432-1033.1984.tb08019.xSearch in Google Scholar PubMed

Yurchenco, P.D., Amenta, P.S., and Patton, B.L. (2004). Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol.22, 521–538.10.1016/j.matbio.2003.10.006Search in Google Scholar PubMed

Published Online: 2005-09-06
Published in Print: 2005-08-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.089/html
Scroll to top button