Startseite Novel thioredoxin targets in Dictyostelium discoideum identified by two-hybrid analysis: interactions of thioredoxin with elongation factor 1α and yeast alcohol dehydrogenase
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Novel thioredoxin targets in Dictyostelium discoideum identified by two-hybrid analysis: interactions of thioredoxin with elongation factor 1α and yeast alcohol dehydrogenase

  • Thomas Brodegger , Anja Stockmann , Jürgen Oberstraß , Wolfgang Nellen und Hartmut Follmann
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 385 Heft 12

Abstract

Thioredoxins (Trx) are ubiquitous dicysteine proteins capable of modulating enzymes and other cellular targets through specific disulfide-dithiol redox changes. They are unique in that a large number of very diverse metabolic systems are addressed and redox-regulated in bacteria, animal, and plant cells, but the finite number of thioredoxin interaction partners is still unknown. Two-hybrid methodology should provide a rational way to establish thioredoxin functions in a given organism. We report a search for physiological target proteins of thioredoxin1 in the social amoeba Dictyostelium discoideum, which possesses three developmentally regulated thioredoxin genes, all of which lack functional characterisation. A two-hybrid approach identified at least seven bona fide thioredoxin partners, including oxidoreductases, proteins of the ribosomal translation apparatus, and the cytoskeletal protein filopodin. With the exception of ribonucleotide reductase, none of these systems had previously been linked to specific redox modulation. Molecular interactions in two of the new thioredoxin/target protein couples were verified by biochemical studies: (1) thioredoxin1 and the abundant elongation factor 1α from D. discoideum form the mixed heterodisulfide characteristic of the thioredoxin mechanism of action; and (2) reduced thioredoxin, but not glutathione, strongly inhibits yeast alcohol dehydrogenase catalysis of ethanol oxidation.

:

Corresponding author

References

Arnér, E.S.J., and Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem.267, 6102–6109.10.1046/j.1432-1327.2000.01701.xSuche in Google Scholar

Balmer, Y., and Schürmann, P. (2001). Heterodimer formation between thioredoxin f and fructose-1,6-bisphosphatase from spinach chloroplasts. FEBS Lett.492, 58–61.10.1016/S0014-5793(01)02229-3Suche in Google Scholar

Balmer, Y., Koller, A., del Val, G., Manieri, W., Schürmann, P., and Buchanan, B.B. (2003). Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc. Natl. Acad. Sci. USA100, 370–375.10.1073/pnas.232703799Suche in Google Scholar

Balmer, Y., Vensel, W.H., Tanaka, C.K., Hurkman, W.J., Gelhaye, E., Rouhier, N. Jacquot, J.P., Manier, W., Schürmann, P., Droux, M., and Buchanan, B.B. (2004). Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc. Natl. Acad. Sci. USA101, 2642–2647.10.1073/pnas.0308583101Suche in Google Scholar

Belke, C.J., Chin, C.C.Q., and Wold, F. (1974). Effect of pH on the reactivity of the active-site sulfhydryl groups in yeast alcohol dehydrogenase. Biochemistry13, 3418–3420.10.1021/bi00713a037Suche in Google Scholar

Bergmeyer, H.U. (1974). Methoden der enzymatischen Analyse. 3rd Edition (Weinheim, Germany: Verlag Chemie), pp. 458–459, 1552–1554.Suche in Google Scholar

Brodegger, T. (2002). Molekularbiologische Funktionsanalysen von Thioredoxinen aus Dictyostelium discoideum. PhD thesis (Kassel, Germany: University of Kassel).Suche in Google Scholar

Brodegger, T., Stockmann, A., Nellen, W., Follmann, H., and Oberstraß, J. (2001). Identification of new thioredoxin interaction partners by the two-hybrid system. Biol. Chem.382, S167.Suche in Google Scholar

Bühner, M., and Sund, H. (1969). Yeast alcohol dehydrogenase. SH groups, disulfide groups, quaternary structure, and reactivation by reductive cleavage of disulfide groups. Eur. J. Biochem.11, 73–79.Suche in Google Scholar

Chien, C., Bartel, P.L., Sternglanz, R., and Fields, S. (1991). The two-hybrid system: a method to identify genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA88, 9578–9582.10.1073/pnas.88.21.9578Suche in Google Scholar

Condeelis, J. (1995). Elongation factor 1α, translation and the cytoskeleton. Trends Biochem. Sci.20, 169–170.10.1016/S0968-0004(00)88998-7Suche in Google Scholar

Dagert, M., and Ehrlich, S.D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene6, 23–28.10.1016/0378-1119(79)90082-9Suche in Google Scholar

Deltour, L., Foglio, M.H., and Duester, G. (1999). Metabolic deficiencies in Adh null mutant mice. Overlapping roles of Adh1 and Adh4 in ethanol clearance and metabolism of retinol. J. Biol. Chem.274, 16796–16801.Suche in Google Scholar

Devreotes, P., and Janetopolous, C. (2003). Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem.278, 20445–20448.10.1074/jbc.R300010200Suche in Google Scholar PubMed

Follmann, H. (2000). Light-dark and thioredoxin-mediated metabolic redox control in plant cells. In: The Redox State and Circadian Rhythms, T. Vanden Driessche, ed. (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 59–83.10.1007/978-94-015-9556-8_4Suche in Google Scholar

Follmann, H., and Häberlein, I. (1995). Thioredoxins: universal, yet specific thiol-disulfide redox cofactors. BioFactors5, 147–156.Suche in Google Scholar

Gietz, R.D., and Woods, R.A. (1995). Transforming yeast with DNA. Methods Mol. Cell. Biol.5, 255–269.Suche in Google Scholar

Goyer, A., Decottignies, P., Issakidis-Bourguet, E., and Miginiac-Maslow, M. (2001). Sites of interaction of thioredoxin with sorghum NADP malate dehydrogenase. FEBS Lett.505, 405–408.10.1016/S0014-5793(01)02860-5Suche in Google Scholar

Hunt, T., Herbert, P., Campbell, E.A., Delidakis, C., and Jackson, R.J. (1983). The use of affinity chromatography reveals a requirement for NADPH, thioredoxin, and thioredoxin reductase for the maintenance of high protein synthesis activity in rabbit reticulocyte lysates. Eur. J. Biochem.131, 303–311.10.1111/j.1432-1033.1983.tb07263.xSuche in Google Scholar

Jacquot, J.P., Vidal, S., Gadal, P., and Schürmann, P. (1978). Evidence for the existence of several enzyme-specific thioredoxins in plants. FEBS Lett.96, 243–246.10.1016/0014-5793(78)80410-4Suche in Google Scholar

Jörnvall, H. (1977). Differences between alcohol dehydrogenases. Eur. J. Biochem.72, 443–452.10.1111/j.1432-1033.1977.tb11268.xSuche in Google Scholar

Karlin, S., and Altschul, S.F. (1990). Methods for assessing the statistical significance of molecular sequence features for general scoring schemes. Proc. Natl. Acad. Sci. USA87, 2264–2268.10.1073/pnas.87.6.2264Suche in Google Scholar

Kern, R., Malki, A., Holmgren, A., and Richarme, G. (2003). Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem. J.371, 965–972.10.1042/bj20030093Suche in Google Scholar

Kuspa, A., Dingermann, T., and Nellen, W. (1995). Analysis of gene function in Dictyostelium. Experientia51, 1116–1123.10.1007/BF01944729Suche in Google Scholar

Laurent, T.C., Moore, C.E., and Reichard, P. (1964). Enzymatic synthesis of deoxyribonucleotides. Isolation and characterisation of thioredoxin, the hydrogen donor from Escherichia coli. J. Biol. Chem.239, 3436–3444.10.1016/S0021-9258(18)97742-2Suche in Google Scholar

Maeda, Y., Inouye, K., and Takeuchi, I. (1997). Dictyostelium– A Model System for Cell and Developmental Biology (Tokyo, Japan: Universal Academy Press).Suche in Google Scholar

Makino, Y., Yoshikawa, N., Okamoto, K., Hirota, K., Yodoi, J., Makino, I., and Tanaka, H. (1999). Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function. J. Biol. Chem.274, 3182–3188.10.1074/jbc.274.5.3182Suche in Google Scholar

Marcus, F., and Harrsch, P.B. (1990). Amino acid sequence of chloroplast fructose-1,6-bisphosphatase. Arch. Biochem. Biophys.279, 151–157.10.1016/0003-9861(90)90475-ESuche in Google Scholar

Mazzurco, M., Sulaman, W., Elina, H., Cock, J.M., and Goring, D.R. (2001). Further analysis of the interactions between Brassica S receptor kinase and three interacting proteins in the yeast two-hybrid system. Plant Mol. Biol.45, 365–376.10.1023/A:1006412329934Suche in Google Scholar

Nissen, P., Thirup, S., Kjeldgaard, M., and Nyborg, J. (1999). The crystal structure of Cys-tRNACys-EF-Tu-GDPNP. Struct. Fold Des.7, 143–156.10.1016/S0969-2126(99)80021-5Suche in Google Scholar

Porqué, P.G., Baldesten, A., and Reichard, P. (1970). Purification of a thioredoxin system from yeast. J. Biol. Chem.245, 2363–2370.10.1016/S0021-9258(18)63161-8Suche in Google Scholar

Russell, D.W., Smith, M., Williamson, V.M., and Young, E.T. (1983). Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J. Biol. Chem.258, 2674–2682.10.1016/S0021-9258(18)32979-XSuche in Google Scholar

Schägger, H., and von Jagow, G. (1987). Tricine SDS polyacrylamide gel electrophoresis for the separation of proteins in the range of 1–100 kDa. Anal. Biochem.166, 368–379.10.1016/0003-2697(87)90587-2Suche in Google Scholar

Stockmann, A. (2002). Analyse der Wechselwirkungen zwischen Thioredoxin 1 und Elongationsfaktor 1α. Diploma (MSc) thesis (Kassel, Germany: University of Kassel).Suche in Google Scholar

Villeret, V., Huang, S., Zhang, Y., Xue, Y., and Lipscomb, W.N. (1995). Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase. Biochemistry34, 4299–4306.10.1021/bi00013a019Suche in Google Scholar

Wallenfels, K., and Sund, H. (1957). Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. Freie SH-Gruppen und Aktivität bei Alkoholdehydrogenase aus Hefe. Biochem. Z.329, 17–30.Suche in Google Scholar

Wetterauer, B., Jacquot, J.P., and Veron, M. (1992a) Thioredoxins from Dictyostelium discoideum are a developmentally regulated multigene family. J. Biol. Chem.267, 9895–9904.10.1016/S0021-9258(19)50177-6Suche in Google Scholar

Wetterauer, B., Veron, M., Miginiac-Maslow, M., Decottignies, P., and Jacquot, J.P. (1992b). Biochemical characterisation of thioredoxin 1 from Dictyostelium discoideum. Eur. J. Biochem.209, 643–649.10.1111/j.1432-1033.1992.tb17331.xSuche in Google Scholar PubMed

Yamanaka, H., Maehira, F., Oshiro, M., Asato, T., Yanagawa, Y, Takei, H., and Nakashima, Y. (2000). A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochem. Biophys. Res. Comm.271, 796–800.10.1006/bbrc.2000.2699Suche in Google Scholar PubMed

Yang, F., Demma, M., Warren, V., Dharmawardhane, S., and Condeelis, J. (1990). Identification of an actin-binding protein from Dictyostelium discoideum as elongation factor 1α. Nature347, 494–496.10.1038/347494a0Suche in Google Scholar PubMed

Published Online: 2005-06-01
Published in Print: 2004-12-01

©2004 by Walter de Gruyter Berlin New York

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.153/html?lang=de
Button zum nach oben scrollen