Family C1 Cysteine Proteases: Biological Diversity or Redundancy?
-
D. K. Nägler
Abstract
Recent progress in the identification and partial characterization of novel genes encoding cysteine proteases of the papain family has considerably increased our knowledge of this family of enzymes. Kinetic data available to date for this large family indicate relatively broad, overlapping specificities for most enzymes, thus inspiring a growing conviction that they may exhibit functional redundancy. This is also supported in part by phenotypes of cathepsin knockout mice and suggests that several proteases can substitute for each other to degrade or process a given substrate. On the other hand, specific functions of one particular protease have also been documented. In addition, differences in cellular distribution and intracellular localization may contribute to defining specific functional roles for some of these proteases.
Copyright © 2003 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- Vito Turk – 30 Years of Research on Cysteine Proteases and Their Inhibitors
- Family C1 Cysteine Proteases: Biological Diversity or Redundancy?
- Molecular Regulation of Human Cathepsin B: Implication in Pathologies
- Caspases and Neuronal Development
- Structural Basis of the Matrix Metalloproteinases and Their Physiological Inhibitors, the Tissue Inhibitors of Metalloproteinases
- Managing Peptidases in the Genomic Era
- Insights into the Roles of Cathepsins in Antigen Processing and Presentation Revealed by Specific Inhibitors
- Cleavage Site Specificity of Cathepsin K toward Cartilage Proteoglycans and Protease Complex Formation
- Toward Computer-Based Cleavage Site Prediction of Cysteine Endopeptidases
- Isolation and Characterization of a Novel and Potent Inhibitor of Arg-Gingipain from Streptomyces sp. Strain FA-70
- Procongopain from Trypanosoma congolense Is Processed at Basic pH: An Unusual Feature among Cathepsin L-Like Cysteine Proteases
- Attenuated Kinin Release from Human Neutrophil Elastase-Pretreated Kininogens by Tissue and Plasma Kallikreins
- Effect of Plant Kunitz Inhibitors from Bauhinia bauhinioides and Bauhinia rufa on Pulmonary Edema Caused by Activated Neutrophils
- Revisiting Ubiquity and Tissue Specificity of Human Calpains
- The Calpastatin-Derived Calpain Inhibitor CP1B Reduces mRNA Expression of Matrix Metalloproteinase-2 and -9 and Invasion by Leukemic THP-1 Cells
- Heat Stress-Dependent DNA Binding of Arabidopsis Heat Shock Transcription Factor HSF1 to Heat Shock Gene Promoters in Arabidopsis Suspension Culture Cells in vivo
- T47-D Cells and Type V Collagen: A Model for the Study of Apoptotic Gene Expression by Breast Cancer Cells
Articles in the same Issue
- Vito Turk – 30 Years of Research on Cysteine Proteases and Their Inhibitors
- Family C1 Cysteine Proteases: Biological Diversity or Redundancy?
- Molecular Regulation of Human Cathepsin B: Implication in Pathologies
- Caspases and Neuronal Development
- Structural Basis of the Matrix Metalloproteinases and Their Physiological Inhibitors, the Tissue Inhibitors of Metalloproteinases
- Managing Peptidases in the Genomic Era
- Insights into the Roles of Cathepsins in Antigen Processing and Presentation Revealed by Specific Inhibitors
- Cleavage Site Specificity of Cathepsin K toward Cartilage Proteoglycans and Protease Complex Formation
- Toward Computer-Based Cleavage Site Prediction of Cysteine Endopeptidases
- Isolation and Characterization of a Novel and Potent Inhibitor of Arg-Gingipain from Streptomyces sp. Strain FA-70
- Procongopain from Trypanosoma congolense Is Processed at Basic pH: An Unusual Feature among Cathepsin L-Like Cysteine Proteases
- Attenuated Kinin Release from Human Neutrophil Elastase-Pretreated Kininogens by Tissue and Plasma Kallikreins
- Effect of Plant Kunitz Inhibitors from Bauhinia bauhinioides and Bauhinia rufa on Pulmonary Edema Caused by Activated Neutrophils
- Revisiting Ubiquity and Tissue Specificity of Human Calpains
- The Calpastatin-Derived Calpain Inhibitor CP1B Reduces mRNA Expression of Matrix Metalloproteinase-2 and -9 and Invasion by Leukemic THP-1 Cells
- Heat Stress-Dependent DNA Binding of Arabidopsis Heat Shock Transcription Factor HSF1 to Heat Shock Gene Promoters in Arabidopsis Suspension Culture Cells in vivo
- T47-D Cells and Type V Collagen: A Model for the Study of Apoptotic Gene Expression by Breast Cancer Cells