Home Life Sciences Nucleotide-Binding Sites in the Functional Unit of Sarcoplasmic Reticulum Ca2+-ATPase as Studied by Photoaffinity Spin-Labeled 2-N3-SL-ATP
Article
Licensed
Unlicensed Requires Authentication

Nucleotide-Binding Sites in the Functional Unit of Sarcoplasmic Reticulum Ca2+-ATPase as Studied by Photoaffinity Spin-Labeled 2-N3-SL-ATP

  • Thomas Palm , Carol Coan and Wolfgang E. Trommer
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 382 Issue 3

Abstract

2-N[3]SLATP [2-azido-2,3O(1-oxyl-2,2,5,5-tetramethyl 3-carbonylpyrroline) adenosine triphosphate], a photoaffinity spinlabeled derivative of ATP with a nitroxide moiety attached to the ribose ring and an azido group attached to C2 of the adenine ring, was used to study the nucleotidebinding site stoichiometry of sarcoplasmic reticulum (SR) Ca[2+]ATPase. The label was shown to bind at the catalytic site of the enzyme, even though the rate of hydrolysis was poor. A maximal binding ratio of 1 mol/mol of ATPase was found. The ESR spectra showed signals from spinspin interactions between two radicals corresponding to a distance of about 15 å between labels bound to adjacent sites on the enzyme. This indicates that the minimal functional unit of the Ca[2+]ATPase is a dimer with the nucleotidebinding sites in close proximity.

:
Published Online: 2005-06-01
Published in Print: 2001-03-21

Copyright © 2001 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Highlight: Fluorescence Correlation Spectroscopy
  2. Heuristic Statistical Analysis of Fluorescence Fluctuation Data with Bright Spikes: Application to Ligand Binding to the Human Serotonin Receptor Expressed in Escherichia coli Cells
  3. Fluorescence Correlation Spectroscopy as a Tool to Investigate Single Molecule Probe Dynamics in Thin Polymer Films
  4. Ligand-Receptor Interactions in the Membrane of Cultured Cells Monitored by Fluorescence Correlation Spectroscopy
  5. Fluorescence Fluctuation Analysis for the Study of Interactions between Oligonucleotides and Polycationic Polymers
  6. Determination of the Net Exchange Rate of Tubulin Dimer in Steady-State Microtubules by Fluorescence Correlation Spectroscopy
  7. UV-Fluorescence Correlation Spectroscopy of 2-Aminopurine
  8. Isolation of Two cDNAs Encoding Functional Human Cytoplasmic Cysteinyl-tRNA Synthetase
  9. Involvement of Intracellular Ca2+in the Regulation of Bovine Leukemia Virus Expression
  10. Nucleotide-Binding Sites in the Functional Unit of Sarcoplasmic Reticulum Ca2+-ATPase as Studied by Photoaffinity Spin-Labeled 2-N3-SL-ATP
  11. Interaction between Lipopolysaccharide (LPS), LPS-Binding Protein (LBP), and Planar Membranes
  12. Differential Binding of Urokinase and Peptide Antagonists to the Urokinase Receptor: Evidence from Characterization of the Receptor in Four Primate Species
  13. Effects of Cysteine to Serine Substitutions in the Two Inter-Chain Disulfide Bonds of Insulin
  14. Tricorn Protease in Bacteria: Characterization of the Enzyme from Streptomyces coelicolor
  15. Structures of Tryparedoxins Revealing Interaction with Trypanothione
  16. Quantitative Two-Color Fluorescence Cross-Correlation Spectroscopy in the Analysis of Polymerase Chain Reaction
  17. Fluorescence Correlation Spectroscopy as a New Method for the Investigation of Aptamer/Target Interactions
  18. Localization of Lysobisphosphatidic Acid-Rich Membrane Domains in Late Endosomes
  19. Fluorescence Correlation Spectroscopy for the Characterisation of Drug Delivery Systems
  20. Accessing Molecular Dynamics in Cells by Fluorescence Correlation Spectroscopy
  21. Tailor-Made Dyes for Fluorescence Correlation Spectroscopy (FCS)
  22. Synergistic Inhibition of the Glucocorticoid Receptor by Radicicol and Benzoquinone Ansamycins
Downloaded on 9.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2001.051/html
Scroll to top button