Home Fluorescence Correlation Spectroscopy for the Characterisation of Drug Delivery Systems
Article
Licensed
Unlicensed Requires Authentication

Fluorescence Correlation Spectroscopy for the Characterisation of Drug Delivery Systems

  • Florence Delie , Robert Gurny and Andreas Zimmer
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 382 Issue 3

Abstract

Fluorescence Correlation Spectroscopy (FCS) offers the possibility to measure molecular interactions between active compounds and drug delivery systems such as cationic peptides or polymeric nanoparticles. In order to investigate the potential of FCS for drug carrier design, a complex made of protamine, a cationic peptide, and a 19mer oligonucleotide was characterised. Protamine was used to form proticles, agglomerates consisting of the oligonucleotide and the cationic peptide. The binding kinetics and proticle formation was studied by FCS. Complete binding of the oligonucleotide to protamine was achieved at a 1:2.5 (w/w) ratio. From the diffusion coefficient, D, a mean value for the hydrodynamic diameter was calculated at 53 nm, which was in agreement with data obtained from photon correlation spectroscopy (PCS). Oligonucleotide loading into cationic monomethylaminoethylmethacrylate (MMAEMA) nanoparticles was also determined by this method at 5.6 % (5.6 g per 100 g of nanoparticles).

:
Published Online: 2005-06-01
Published in Print: 2001-03-21

Copyright © 2001 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Highlight: Fluorescence Correlation Spectroscopy
  2. Heuristic Statistical Analysis of Fluorescence Fluctuation Data with Bright Spikes: Application to Ligand Binding to the Human Serotonin Receptor Expressed in Escherichia coli Cells
  3. Fluorescence Correlation Spectroscopy as a Tool to Investigate Single Molecule Probe Dynamics in Thin Polymer Films
  4. Ligand-Receptor Interactions in the Membrane of Cultured Cells Monitored by Fluorescence Correlation Spectroscopy
  5. Fluorescence Fluctuation Analysis for the Study of Interactions between Oligonucleotides and Polycationic Polymers
  6. Determination of the Net Exchange Rate of Tubulin Dimer in Steady-State Microtubules by Fluorescence Correlation Spectroscopy
  7. UV-Fluorescence Correlation Spectroscopy of 2-Aminopurine
  8. Isolation of Two cDNAs Encoding Functional Human Cytoplasmic Cysteinyl-tRNA Synthetase
  9. Involvement of Intracellular Ca2+in the Regulation of Bovine Leukemia Virus Expression
  10. Nucleotide-Binding Sites in the Functional Unit of Sarcoplasmic Reticulum Ca2+-ATPase as Studied by Photoaffinity Spin-Labeled 2-N3-SL-ATP
  11. Interaction between Lipopolysaccharide (LPS), LPS-Binding Protein (LBP), and Planar Membranes
  12. Differential Binding of Urokinase and Peptide Antagonists to the Urokinase Receptor: Evidence from Characterization of the Receptor in Four Primate Species
  13. Effects of Cysteine to Serine Substitutions in the Two Inter-Chain Disulfide Bonds of Insulin
  14. Tricorn Protease in Bacteria: Characterization of the Enzyme from Streptomyces coelicolor
  15. Structures of Tryparedoxins Revealing Interaction with Trypanothione
  16. Quantitative Two-Color Fluorescence Cross-Correlation Spectroscopy in the Analysis of Polymerase Chain Reaction
  17. Fluorescence Correlation Spectroscopy as a New Method for the Investigation of Aptamer/Target Interactions
  18. Localization of Lysobisphosphatidic Acid-Rich Membrane Domains in Late Endosomes
  19. Fluorescence Correlation Spectroscopy for the Characterisation of Drug Delivery Systems
  20. Accessing Molecular Dynamics in Cells by Fluorescence Correlation Spectroscopy
  21. Tailor-Made Dyes for Fluorescence Correlation Spectroscopy (FCS)
  22. Synergistic Inhibition of the Glucocorticoid Receptor by Radicicol and Benzoquinone Ansamycins
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2001.060/html
Scroll to top button