Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Organization

  • Matthias Hofmann
Veröffentlichen auch Sie bei De Gruyter Brill
© 2024 Walter de Gruyter GmbH, Berlin/Boston

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Kapitel in diesem Buch

  1. Frontmatter I
  2. Acknowledgements VII
  3. Contents XIII
  4. Introduction and challenge 1
  5. Basics 3
  6. 1 Getting hands on Python 4
  7. 2 Using virtual environments 6
  8. 3 Configuring your integrated development environment 9
  9. 4 Having a GitHub account 12
  10. 5 Creating repositories for dedicated projects 14
  11. 6 Synchronizing GitHub desktop 16
  12. 7 Knowing basic markdown 19
  13. Organization 21
  14. 8 Having the overall concept sketch in mind 25
  15. 9 Initializing a project with poetry 27
  16. 10 Tracking the environment 30
  17. 11 Getting your paths right 32
  18. 12 Preparing to share 35
  19. 13 Writing convenience functions 38
  20. 14 Using TOML files for configuration 41
  21. 15 Getting used to testing 43
  22. Interfacing with common data formats 47
  23. 16 Reading Excel files 48
  24. 17 Reading text files 51
  25. 18 Reading text from Word files 54
  26. 19 Reading tables from Word files 57
  27. 20 Reading PDF files 59
  28. 21 Parsing website contents 61
  29. 22 Leveraging regular expressions 64
  30. 23 Writing to a database 67
  31. 24 Reading from a database 71
  32. Planning experiments and/or building on legacy data/information 77
  33. 25 Leveraging existing experiments 78
  34. 26 Planning experiments 81
  35. 27 Using legacy and planned experiments hand in hand 87
  36. Collecting experimental data / lab work phase 93
  37. 28 Using dedicated modules – use what’s available 94
  38. 29 Using dedicated modules – build what’s missing 99
  39. Visualization of experimental results 103
  40. 30 Simplicity of matplotlib 105
  41. 31 Creating a custom matplotlib style 109
  42. 32 Convenience of seaborn 112
  43. 33 Interactivity of plotly 115
  44. 34 Representing multidimensional data 118
  45. 35 Representing multidimensional data in a funny way 124
  46. Approaching the scientific questions (modeling and recommendation) 131
  47. 36 Picking relevant data and information 132
  48. 37 Building a model with gplearn 138
  49. 38 Playing with the model or “what if” 145
  50. 39 Playing with the model or – jupyter notebook 153
  51. 40 Playing with the model or – voila 157
  52. 41 Playing with the model or – streamlit 160
  53. 42 Dealing with too few experiments 166
  54. 43 Solving the reverse problem applying multiobjective optimization 173
  55. 44 Ensuring the envisioned causality 180
  56. Sharing the project 187
  57. 45 Building files for distribution 188
  58. 46 Pushing to package indices 190
  59. 47 Sharing streamlit applications 193
  60. Further reading 197
  61. 48 Ensuring code styling via black 198
  62. 49 Configuring pre-commit 201
  63. 50 Building standalone solutions via PyQt 204
  64. Concluding remarks 207
  65. List of Figures 211
  66. Index 215
Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783111334608-010/html
Button zum nach oben scrollen