5 Scenarios for the Energy System
-
Almut Kirchner
Abstract
Scenarios are used as an analytical method to systematically examine possible developments of the energy system with its components that interact in a complex manner. Different logics can be used to derive statements of very different character, such as “business-as-usual” scenarios or “target scenarios” or statements about how the system can develop using different bundles of political instruments. Scenarios are always conditional statements. Absolute statements about the future are not possible or intended when using scenarios, rather, they represent spaces of possibilities in order to provide foundations for political or investment decisions. Investigation dimensions mostly include the definition and scope of system boundaries, and balance rules and equations, temporal dimensions, i. e., time frames, framework conditions, scenario logic, interactions between components, technological developments, reactions to political instruments, and the evaluated outcome variables. Current energy system analyses are typically conducted in a highly quantitative and modelbased manner. The consistency of modeling methodology, research questions, implementation of research questions into assumptions for system components, and evaluation dimensions is crucial to make the results useful for scenario comparisons. It should always be considered that the analytical approach is not about capturing or predicting the future as accurately as possible, but rather about gaining a better understanding of the influencing factors and their effects in the future through a range of scenarios. Accordingly, the goal is not to “look into the crystal ball and see how it will be,” but to explore the field of possibilities in order to derive both necessary actions as well as opportunities and chances. Just like the energy system and its environment, the methods of scenario analysis are constantly evolving, that is, in co-evolution with questions, quantitative possibilities, and new data sources.
Abstract
Scenarios are used as an analytical method to systematically examine possible developments of the energy system with its components that interact in a complex manner. Different logics can be used to derive statements of very different character, such as “business-as-usual” scenarios or “target scenarios” or statements about how the system can develop using different bundles of political instruments. Scenarios are always conditional statements. Absolute statements about the future are not possible or intended when using scenarios, rather, they represent spaces of possibilities in order to provide foundations for political or investment decisions. Investigation dimensions mostly include the definition and scope of system boundaries, and balance rules and equations, temporal dimensions, i. e., time frames, framework conditions, scenario logic, interactions between components, technological developments, reactions to political instruments, and the evaluated outcome variables. Current energy system analyses are typically conducted in a highly quantitative and modelbased manner. The consistency of modeling methodology, research questions, implementation of research questions into assumptions for system components, and evaluation dimensions is crucial to make the results useful for scenario comparisons. It should always be considered that the analytical approach is not about capturing or predicting the future as accurately as possible, but rather about gaining a better understanding of the influencing factors and their effects in the future through a range of scenarios. Accordingly, the goal is not to “look into the crystal ball and see how it will be,” but to explore the field of possibilities in order to derive both necessary actions as well as opportunities and chances. Just like the energy system and its environment, the methods of scenario analysis are constantly evolving, that is, in co-evolution with questions, quantitative possibilities, and new data sources.
Chapters in this book
- Frontmatter I
- List of Contributing Authors V
- Foreword by Professor Andris Piebalgs, Former EU Commissioner for Energy XI
- Foreword by Dr. Peter Körte, Chief Technology Officer & Chief Strategy Officer at Siemens AG XV
- Preface of the Editors XIX
- Contents XXV
- Abbreviations XXXI
- Frequently Used Metric Prefixes and Physical Quantities XLV
- 1 History and Current Challenges of Electrical Power Supply Systems 1
- 2 General Technical Aspects of the Electrical Power System: A Case Study of the German Power System in Transition 37
- 3 Power Sector Transformation: An Indian Perspective 53
- 4 Major Non-technical Questions of Today’s Energy Supply: Between Energy Policy and Regulation 95
- 5 Scenarios for the Energy System 111
- 6 How Europe Regulates the Internal Energy Market 127
- 7 Requirements for the Reliability of Energy System Planning 137
- 8 Currents of Change: Electrification for a Greener Future 151
- 9 Understanding the Levelized Cost of Energy 167
- 10 Influence of CO2 Targets on Energy Planning: Optimal Energy Supply from a Climate Perspective 185
- 11 Energy Planning With a Special Focus on Hard-To-Abate Sectors and Decarbonization 203
- 12 Energy Storage Technologies in Support of the Energy Transition and Climate Neutrality 235
- 13 Electrical Supply Infrastructure Under Transformation 249
- 14 Innovation (Not Only) in the Grid Sector: Market and Regulation Also Require Reinvention 275
- 15 Challenges of Today’s Energy Distribution 303
- 16 Resilience: Considering Disruptive Events in the Energy Planning of Buildings and Neighborhoods 335
- 17 Siemens Princeton Resilient Campus: Defining the Future of Energy with a Sustainable and Reliable Microgrid 351
- 18 Introduction to Energy Trading and the Role of Energy Exchanges 361
- 19 The Role of Power Exchanges (PX) in the Energy Transition: Between Cross-Border and Local Trading 375
- 20 Energy Markets, Grids and Flexibility: A Future Market Design for a Decarbonized Energy System 395
- 21 Local Trading Within Energy Communities 419
- 22 Verification Methods for Renewable Electricity: Guarantees of Origin, PPAs, and Renewable Fuels of Non-biological Origin 435
- 23 The Unique German Smart Metering Approach in Contrast to International Strategies 453
- 24 Real-Time as a Natural System Boundary 473
- 25 Internet of Things (IoT) and Sensor Technology in Electrical Energy Supply Systems 495
- 26 The Perfect Storm: Where the Energy Transition Meets the Digital Transformation 509
- 27 The Dark Side of Digitalization 529
- 28 Artificial Intelligence and Data Efficiency 543
- 29 Aspects of Data Protection and Security in Smart Electronical Systems out of “European Perspective” 565
- 30 Actively Shaping the Digital Transformation Process with Systemic Organizational Development 581
- 31 New IT for the Digital Energy of the Future 609
- 32 Connecting and Digitalizing the Energy Sector with a Dynamic IT Strategy 629
- 33 Information Security and Digitalization at Distribution System Operators 649
- 34 Digital Efficiency – a Powerful Tool! 671
- 35 Asset Management in the Energy Transition: Requirements and Technologies 695
- 36 Power Shortage Situation 715
- 37 Blackout: The European Electricity Supply System in Transition 733
- 38 Everyday Life Without Electricity in the Household Customer Sector 781
- 39 Technical Requirements and Implications of Functioning Sector Coupling 791
- 40 Transition from Planning to Implementation of District Projects with Sector Coupling 819
- 41 Green Hydrogen Potentials for the Power Sector in Germany 831
- 42 Electricity is Easy, Fuels are Hard: Lessons from the Maritime Industry 843
- 43 Project example “pebbles” 867
- 44 New Digital Technologies Find Their Way into the Grid Sector 889
- 45 Environmental, Social, Governance (ESG), and Digitalization in the Commercial Real Estate Industry 909
- 46 Scenarios for Training and Continuing Education 923
- 47 Electricity Market and Electricity System Transformation: North American Perspective 943
- Index 953
Chapters in this book
- Frontmatter I
- List of Contributing Authors V
- Foreword by Professor Andris Piebalgs, Former EU Commissioner for Energy XI
- Foreword by Dr. Peter Körte, Chief Technology Officer & Chief Strategy Officer at Siemens AG XV
- Preface of the Editors XIX
- Contents XXV
- Abbreviations XXXI
- Frequently Used Metric Prefixes and Physical Quantities XLV
- 1 History and Current Challenges of Electrical Power Supply Systems 1
- 2 General Technical Aspects of the Electrical Power System: A Case Study of the German Power System in Transition 37
- 3 Power Sector Transformation: An Indian Perspective 53
- 4 Major Non-technical Questions of Today’s Energy Supply: Between Energy Policy and Regulation 95
- 5 Scenarios for the Energy System 111
- 6 How Europe Regulates the Internal Energy Market 127
- 7 Requirements for the Reliability of Energy System Planning 137
- 8 Currents of Change: Electrification for a Greener Future 151
- 9 Understanding the Levelized Cost of Energy 167
- 10 Influence of CO2 Targets on Energy Planning: Optimal Energy Supply from a Climate Perspective 185
- 11 Energy Planning With a Special Focus on Hard-To-Abate Sectors and Decarbonization 203
- 12 Energy Storage Technologies in Support of the Energy Transition and Climate Neutrality 235
- 13 Electrical Supply Infrastructure Under Transformation 249
- 14 Innovation (Not Only) in the Grid Sector: Market and Regulation Also Require Reinvention 275
- 15 Challenges of Today’s Energy Distribution 303
- 16 Resilience: Considering Disruptive Events in the Energy Planning of Buildings and Neighborhoods 335
- 17 Siemens Princeton Resilient Campus: Defining the Future of Energy with a Sustainable and Reliable Microgrid 351
- 18 Introduction to Energy Trading and the Role of Energy Exchanges 361
- 19 The Role of Power Exchanges (PX) in the Energy Transition: Between Cross-Border and Local Trading 375
- 20 Energy Markets, Grids and Flexibility: A Future Market Design for a Decarbonized Energy System 395
- 21 Local Trading Within Energy Communities 419
- 22 Verification Methods for Renewable Electricity: Guarantees of Origin, PPAs, and Renewable Fuels of Non-biological Origin 435
- 23 The Unique German Smart Metering Approach in Contrast to International Strategies 453
- 24 Real-Time as a Natural System Boundary 473
- 25 Internet of Things (IoT) and Sensor Technology in Electrical Energy Supply Systems 495
- 26 The Perfect Storm: Where the Energy Transition Meets the Digital Transformation 509
- 27 The Dark Side of Digitalization 529
- 28 Artificial Intelligence and Data Efficiency 543
- 29 Aspects of Data Protection and Security in Smart Electronical Systems out of “European Perspective” 565
- 30 Actively Shaping the Digital Transformation Process with Systemic Organizational Development 581
- 31 New IT for the Digital Energy of the Future 609
- 32 Connecting and Digitalizing the Energy Sector with a Dynamic IT Strategy 629
- 33 Information Security and Digitalization at Distribution System Operators 649
- 34 Digital Efficiency – a Powerful Tool! 671
- 35 Asset Management in the Energy Transition: Requirements and Technologies 695
- 36 Power Shortage Situation 715
- 37 Blackout: The European Electricity Supply System in Transition 733
- 38 Everyday Life Without Electricity in the Household Customer Sector 781
- 39 Technical Requirements and Implications of Functioning Sector Coupling 791
- 40 Transition from Planning to Implementation of District Projects with Sector Coupling 819
- 41 Green Hydrogen Potentials for the Power Sector in Germany 831
- 42 Electricity is Easy, Fuels are Hard: Lessons from the Maritime Industry 843
- 43 Project example “pebbles” 867
- 44 New Digital Technologies Find Their Way into the Grid Sector 889
- 45 Environmental, Social, Governance (ESG), and Digitalization in the Commercial Real Estate Industry 909
- 46 Scenarios for Training and Continuing Education 923
- 47 Electricity Market and Electricity System Transformation: North American Perspective 943
- Index 953