Startseite Mathematik Chapter 8. Rigorous proof of the Strong Elliptic Law
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chapter 8. Rigorous proof of the Strong Elliptic Law

  • V. L. Girko
Veröffentlichen auch Sie bei De Gruyter Brill
© 2018 Walter de Gruyter GmbH, Berlin/Munich/Boston

© 2018 Walter de Gruyter GmbH, Berlin/Munich/Boston

Kapitel in diesem Buch

  1. Frontmatter I
  2. CONTENTS V
  3. List of basic notations and assumptions XVII
  4. Preface and some historical remarks XX
  5. Chapter 1. Introduction to the theory of sample matrices of fixed dimension 1
  6. Chapter 2. Canonical equations 51
  7. Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices 139
  8. Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices 201
  9. Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices 277
  10. Chapter 6. The first proof of the Strong Circular Law 325
  11. Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law 349
  12. Chapter 8. Rigorous proof of the Strong Elliptic Law 369
  13. Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries 405
  14. Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices 435
  15. Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) 453
  16. Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix Ȓm„(n) is equal to 0(n-1/2) under the condition m„n-1≤c<1 495
  17. Chapter 13. The First Spacing Law for random symmetric matrices 535
  18. Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) 553
  19. References 649
  20. Index 669
Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110916683-010/html?lang=de
Button zum nach oben scrollen