Kapitel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Chapter 8. Rigorous proof of the Strong Elliptic Law
-
V. L. Girko
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Kapitel in diesem Buch
- Frontmatter I
- CONTENTS V
- List of basic notations and assumptions XVII
- Preface and some historical remarks XX
- Chapter 1. Introduction to the theory of sample matrices of fixed dimension 1
- Chapter 2. Canonical equations 51
- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices 139
- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices 201
- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices 277
- Chapter 6. The first proof of the Strong Circular Law 325
- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law 349
- Chapter 8. Rigorous proof of the Strong Elliptic Law 369
- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries 405
- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices 435
- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) 453
- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix Ȓm„(n) is equal to 0(n-1/2) under the condition m„n-1≤c<1 495
- Chapter 13. The First Spacing Law for random symmetric matrices 535
- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) 553
- References 649
- Index 669
Kapitel in diesem Buch
- Frontmatter I
- CONTENTS V
- List of basic notations and assumptions XVII
- Preface and some historical remarks XX
- Chapter 1. Introduction to the theory of sample matrices of fixed dimension 1
- Chapter 2. Canonical equations 51
- Chapter 3. The First Law for the eigenvalues and eigenvectors of random symmetric matrices 139
- Chapter 4. The Second Law for the singular values and eigenvectors of random matrices. Inequalities for the spectral radius of large random matrices 201
- Chapter 5. The Third Law for the eigenvalues and eigenvectors of empirical covariance matrices 277
- Chapter 6. The first proof of the Strong Circular Law 325
- Chapter 7. Strong Law for normalized spectral functions of nonselfadjoint random matrices with independent row vectors and simple rigorous proof of the Strong Circular Law 349
- Chapter 8. Rigorous proof of the Strong Elliptic Law 369
- Chapter 9. The Circular and Uniform Laws for eigenvalues of random nonsymmetric complex matrices with independent entries 405
- Chapter 10. Strong V-Law for eigenvalues of nonsymmetric random matrices 435
- Chapter 11. Convergence rate of the expected spectral functions of symmetric random matrices is equal to 0(n-1/2) 453
- Chapter 12. Convergence rate of expected spectral functions of the sample covariance matrix Ȓm„(n) is equal to 0(n-1/2) under the condition m„n-1≤c<1 495
- Chapter 13. The First Spacing Law for random symmetric matrices 535
- Chapter 14. Ten years of General Statistical Analysis (The main G-estimators of General Statistical Analysis) 553
- References 649
- Index 669