Chapter
Publicly Available
Frontmatter
-
Askar Tuganbaev
Chapters in this book
- Frontmatter I
- Contents VII
- Introduction IX
- 1 Preliminary properties of A((x, φ)) and M((x, φ)) 1
- 2 Noetherian rings A((x, φ)) 10
- 3 Serial and Bezout rings A((x, φ)) 17
- 4 Prime and semiprime skew Laurent series rings 31
- 5 Regular and biregular Laurent series rings 39
- 6 Equivalent definitions of Laurent rings 47
- 7 Generalized Laurent rings 53
- 8 Properties of Laurent rings 63
- 9 Laurent rings: examples, relation 67
- 10 Noetherian and Artinian Laurent rings 81
- 11 Simple and semisimple Laurent rings 87
- 12 Uniserial and serial Laurent rings 91
- 13 Semilocal Laurent rings 98
- 14 Filtrations and (generalized) Malcev–Neumann rings 106
- 15 Properties of generalized Malcev–Neumann rings 113
- 16 Properties and examples of Malcev–Neumann rings 118
- 17 Laurent series in two variables 126
- Bibliography 129
- Notation 133
- Index 135
Chapters in this book
- Frontmatter I
- Contents VII
- Introduction IX
- 1 Preliminary properties of A((x, φ)) and M((x, φ)) 1
- 2 Noetherian rings A((x, φ)) 10
- 3 Serial and Bezout rings A((x, φ)) 17
- 4 Prime and semiprime skew Laurent series rings 31
- 5 Regular and biregular Laurent series rings 39
- 6 Equivalent definitions of Laurent rings 47
- 7 Generalized Laurent rings 53
- 8 Properties of Laurent rings 63
- 9 Laurent rings: examples, relation 67
- 10 Noetherian and Artinian Laurent rings 81
- 11 Simple and semisimple Laurent rings 87
- 12 Uniserial and serial Laurent rings 91
- 13 Semilocal Laurent rings 98
- 14 Filtrations and (generalized) Malcev–Neumann rings 106
- 15 Properties of generalized Malcev–Neumann rings 113
- 16 Properties and examples of Malcev–Neumann rings 118
- 17 Laurent series in two variables 126
- Bibliography 129
- Notation 133
- Index 135