Home Physical Sciences 9 Crystallographic challenges in corrosion research
Chapter
Licensed
Unlicensed Requires Authentication

9 Crystallographic challenges in corrosion research

  • Christiane Stephan-Scherb
Become an author with De Gruyter Brill
Crystallography in Materials Science
This chapter is in the book Crystallography in Materials Science

Abstract

High-temperature corrosion is a widespread problem in various industries. As soon as a hot and reactive gas (CO2, O2, H2O, SO2, NOx, etc.) is in contact with a solid, physico-chemical processes at the surface and interfaces lead to material degradation. The processes are dynamic and controlled by thermodynamic and kinetic boundary conditions. Whether a reaction product is protective or not depends on various factors, such as chemical composition of the solid and the reactive media, surface treatment as well as diffusion and transport paths of cations and anions. Resulting chemical and structural inhomogeneities with the corrosion layers are characterized by off stoichiometry within cationic and anionic sub lattices. The competitive processes can be studied by various techniques of applied crystallography. This chapter gives an overview on the challenges of chemical-structural analysis of reaction products by crystallographic methods such as X-ray diffraction and X-ray near-edge structure spectroscopy and scanning electron microscopy electron backscatter diffraction (SEM-EBSD) for corrosion science.

Abstract

High-temperature corrosion is a widespread problem in various industries. As soon as a hot and reactive gas (CO2, O2, H2O, SO2, NOx, etc.) is in contact with a solid, physico-chemical processes at the surface and interfaces lead to material degradation. The processes are dynamic and controlled by thermodynamic and kinetic boundary conditions. Whether a reaction product is protective or not depends on various factors, such as chemical composition of the solid and the reactive media, surface treatment as well as diffusion and transport paths of cations and anions. Resulting chemical and structural inhomogeneities with the corrosion layers are characterized by off stoichiometry within cationic and anionic sub lattices. The competitive processes can be studied by various techniques of applied crystallography. This chapter gives an overview on the challenges of chemical-structural analysis of reaction products by crystallographic methods such as X-ray diffraction and X-ray near-edge structure spectroscopy and scanning electron microscopy electron backscatter diffraction (SEM-EBSD) for corrosion science.

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/9783110674910-009/html?lang=en
Scroll to top button