5. Mechanical properties of bamboo yarn: A biodegradable composite material for structural works
-
Damenortey R. Akwada
and Esther T. Akinlabi
Abstract
The hazardous effects of synthetic and petroleum-based polymers on the environment have called for environmental friendly, renewable, and sustainable materials and have become a topic of research for many scientists and other researchers across the globe, researching natural fibers as an alternative reinforcement polymer composite raw material. Natural fibers are readily available and cheap and have less weight, less energy, and superior mechanical properties such as high strength and stiffness. Bamboo yarn as reinforcement of polymer composites is nonabrasive, ecofriendly, and biodegradable and can serve as a raw material for industrial engineering applications. In this chapter, the study aims to evaluate the mechanical properties of bamboo yarn (woven or bidirectional) and (unwoven or 45° orientation) as reinforcement in polymer composite, an innovation to utilize its properties in structural designing and fabrication of laminates. The extraction and treatment processes of bamboo yarn and its application as reinforcement in polymer composite are explained in this chapter. The impact, flexural, tensile, and scanning electron microscope were performed to evaluate the mechanical properties and surface morphology of the composites. The influence of bamboo yarn orientation, yarn content, size, and treatment agents on the mechanical properties of the composite was investigated. The chapter discusses the fabrication process of the composite and examines the bamboo yarn-epoxy matrix interfacial bonding, taking into consideration the moisture effect on the composite. The thermal stability and thermal degradation of the composite were investigated using thermogravimetric analysis and differential thermogravimetric analysis in a nitrogen atmosphere.
Abstract
The hazardous effects of synthetic and petroleum-based polymers on the environment have called for environmental friendly, renewable, and sustainable materials and have become a topic of research for many scientists and other researchers across the globe, researching natural fibers as an alternative reinforcement polymer composite raw material. Natural fibers are readily available and cheap and have less weight, less energy, and superior mechanical properties such as high strength and stiffness. Bamboo yarn as reinforcement of polymer composites is nonabrasive, ecofriendly, and biodegradable and can serve as a raw material for industrial engineering applications. In this chapter, the study aims to evaluate the mechanical properties of bamboo yarn (woven or bidirectional) and (unwoven or 45° orientation) as reinforcement in polymer composite, an innovation to utilize its properties in structural designing and fabrication of laminates. The extraction and treatment processes of bamboo yarn and its application as reinforcement in polymer composite are explained in this chapter. The impact, flexural, tensile, and scanning electron microscope were performed to evaluate the mechanical properties and surface morphology of the composites. The influence of bamboo yarn orientation, yarn content, size, and treatment agents on the mechanical properties of the composite was investigated. The chapter discusses the fabrication process of the composite and examines the bamboo yarn-epoxy matrix interfacial bonding, taking into consideration the moisture effect on the composite. The thermal stability and thermal degradation of the composite were investigated using thermogravimetric analysis and differential thermogravimetric analysis in a nitrogen atmosphere.
Chapters in this book
- Frontmatter I
- Preface V
- Contents XI
- List of contributors XIII
- Editors’ biographies XVII
-
Part I: Introduction and Material
- 1. An insight into plant-based biodegradable composites 3
- 2. Corn (maize) – its fibers, polymers, composites, and applications: A review 13
-
Part II: Manufacturing and Properties
- 3. Production of biodegradable composites from agricultural waste: A review 39
- 4. Natural fiber-based biocomposites: Effect of orientation on mechanical properties 49
- 5. Mechanical properties of bamboo yarn: A biodegradable composite material for structural works 81
- 6. Aggrandized flexural properties of assorted natural biological materials 111
- 7. Hygrothermoelastic behaviour Natural fibers based composites: Mechanisms and formalism 141
-
Part III: Machining and Application
- 8. Influence of drilling parameters on the thrust force and mechanical properties of biodegradable particleboard composite panels: A review 167
- 9. A numerical study of rotating functionally graded annular fin 183
- Index 193
Chapters in this book
- Frontmatter I
- Preface V
- Contents XI
- List of contributors XIII
- Editors’ biographies XVII
-
Part I: Introduction and Material
- 1. An insight into plant-based biodegradable composites 3
- 2. Corn (maize) – its fibers, polymers, composites, and applications: A review 13
-
Part II: Manufacturing and Properties
- 3. Production of biodegradable composites from agricultural waste: A review 39
- 4. Natural fiber-based biocomposites: Effect of orientation on mechanical properties 49
- 5. Mechanical properties of bamboo yarn: A biodegradable composite material for structural works 81
- 6. Aggrandized flexural properties of assorted natural biological materials 111
- 7. Hygrothermoelastic behaviour Natural fibers based composites: Mechanisms and formalism 141
-
Part III: Machining and Application
- 8. Influence of drilling parameters on the thrust force and mechanical properties of biodegradable particleboard composite panels: A review 167
- 9. A numerical study of rotating functionally graded annular fin 183
- Index 193