8 Controlling of light with electromagnons
-
David Szaller
, Alexey Shuvaev , Alexander A. Mukhin , Artem M. Kuzmenko und Andrei Pimenov
Abstract
Magnetoelectric coupling in multiferroic materials opens new routes to control the propagation of light. The new effects arise due to dynamic magnetoelectric susceptibility that cross-couples the electric and magnetic fields of light and modifies the solutions of Maxwell equations in media. In this paper, two major effects will be considered in detail: optical activity and asymmetric propagation. In case of optical activity the polarization plane of the input radiation rotates by an angle proportional to the magnetoelectric susceptibility. The asymmetric propagation is a counter-intuitive phenomenon and it represents different transmission coefficients for forward and backward directions. Both effects are especially strong close to resonance frequencies of electromagnons, i. e. excitations in multiferroic materials that reveal simultaneous electric and magnetic character.
Abstract
Magnetoelectric coupling in multiferroic materials opens new routes to control the propagation of light. The new effects arise due to dynamic magnetoelectric susceptibility that cross-couples the electric and magnetic fields of light and modifies the solutions of Maxwell equations in media. In this paper, two major effects will be considered in detail: optical activity and asymmetric propagation. In case of optical activity the polarization plane of the input radiation rotates by an angle proportional to the magnetoelectric susceptibility. The asymmetric propagation is a counter-intuitive phenomenon and it represents different transmission coefficients for forward and backward directions. Both effects are especially strong close to resonance frequencies of electromagnons, i. e. excitations in multiferroic materials that reveal simultaneous electric and magnetic character.
Kapitel in diesem Buch
- Frontmatter I
- Preface V
- Contents VII
- List of Contributing Authors XIII
- 1 A short history of multiferroics 1
- 2 Spin dynamics, antiferrodistortion and magnetoelectric interaction in multiferroics. The case of BiFeO3 13
- 3 Hexagonal manganites: Strong coupling of ferroelectricity and magnetic orders 37
- 4 Spiral spin structures and skyrmions in multiferroics 89
- 5 Non-collinear magnetism & multiferroicity: the perovskite case 127
- 6 Ferroelectric polarization in multiferroics 159
- 7 Probing local order in multiferroics by transmission electron microscopy 193
- 8 Controlling of light with electromagnons 249
- 9 Dynamical magnetoelectric phenomena of skyrmions in multiferroics 271
- 10 Magneto-electric multiferroics: designing new materials from first-principles calculations 293
- 11 Domains and domain walls in multiferroics 335
- 12 Multiferroic heterostructures for spintronics 371
- Index 413
Kapitel in diesem Buch
- Frontmatter I
- Preface V
- Contents VII
- List of Contributing Authors XIII
- 1 A short history of multiferroics 1
- 2 Spin dynamics, antiferrodistortion and magnetoelectric interaction in multiferroics. The case of BiFeO3 13
- 3 Hexagonal manganites: Strong coupling of ferroelectricity and magnetic orders 37
- 4 Spiral spin structures and skyrmions in multiferroics 89
- 5 Non-collinear magnetism & multiferroicity: the perovskite case 127
- 6 Ferroelectric polarization in multiferroics 159
- 7 Probing local order in multiferroics by transmission electron microscopy 193
- 8 Controlling of light with electromagnons 249
- 9 Dynamical magnetoelectric phenomena of skyrmions in multiferroics 271
- 10 Magneto-electric multiferroics: designing new materials from first-principles calculations 293
- 11 Domains and domain walls in multiferroics 335
- 12 Multiferroic heterostructures for spintronics 371
- Index 413