Home Mathematics Spectral methods for some kinds of fractional differential equations
Chapter
Licensed
Unlicensed Requires Authentication

Spectral methods for some kinds of fractional differential equations

Traditional and Müntz spectral methods
  • Chuanju Xu
Become an author with De Gruyter Brill
Volume 3 Numerical Methods
This chapter is in the book Volume 3 Numerical Methods

Abstract

In this chapter, we design and analyze two types of spectral methods for fractional differential equations. The first spectral method makes use of the traditional polynomials and follows the standard Galerkin framework, while the second method is based on the Müntz polynomials and weighted Galerkin approach. For the first method we will first introduce suitable functional spaces and develop a theoretical framework for the weak solution of the STFDE. This allows to apply the existing theory for elliptic problems to prove the existence and uniqueness of the weak solution. Then we construct a Galerkin spectral method for efficiently solving the spacetime fractional diffusion problem. Optimal error estimates are derived under certain regularity conditions on the exact solution. For the second method, we first introduce a new class of generalized fractional Jacobi polynomials (GFJPs), also known as Müntz polynomials, and investigate their approximation properties. Then we propose an efficient scheme using GFJPs for the time-fractional diffusion equation. Our theoretical or numerical investigation shows that the proposed scheme is exponentially convergent for general right hand side functions, even though the exact solution has very limited regularity. Implementation details are also provided, along with a series of numerical examples to show the efficiency of the proposed methods.

Abstract

In this chapter, we design and analyze two types of spectral methods for fractional differential equations. The first spectral method makes use of the traditional polynomials and follows the standard Galerkin framework, while the second method is based on the Müntz polynomials and weighted Galerkin approach. For the first method we will first introduce suitable functional spaces and develop a theoretical framework for the weak solution of the STFDE. This allows to apply the existing theory for elliptic problems to prove the existence and uniqueness of the weak solution. Then we construct a Galerkin spectral method for efficiently solving the spacetime fractional diffusion problem. Optimal error estimates are derived under certain regularity conditions on the exact solution. For the second method, we first introduce a new class of generalized fractional Jacobi polynomials (GFJPs), also known as Müntz polynomials, and investigate their approximation properties. Then we propose an efficient scheme using GFJPs for the time-fractional diffusion equation. Our theoretical or numerical investigation shows that the proposed scheme is exponentially convergent for general right hand side functions, even though the exact solution has very limited regularity. Implementation details are also provided, along with a series of numerical examples to show the efficiency of the proposed methods.

Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/9783110571684-004/html
Scroll to top button