Home Mathematics The Hodge-Laplacian
book: The Hodge-Laplacian
Book
Licensed
Unlicensed Requires Authentication

The Hodge-Laplacian

Boundary Value Problems on Riemannian Manifolds
  • Dorina Mitrea , Irina Mitrea , Marius Mitrea and Michael Taylor
Language: English
Published/Copyright: 2016
Become an author with De Gruyter Brill

About this book

The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains.
Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals.

Contents:
Preface
Introduction and Statement of Main Results
Geometric Concepts and Tools
Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains
Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains
Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains
Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains
Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism
Additional Results and Applications
Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis
Bibliography
Index

Author / Editor information

D. Mitrea and M. Mitrea, Univ. of Missouri, USA;
I. Mitrea, Temple Univ., Philadelphia, USA;
M. Taylor, Univ. of North Carolina, USA.

Reviews

"The book represents the cumulation of a large body of work of the authors. Nonetheless, it is essentially self-contained, including the main geometric and analytic preliminaries. There are a large number of variations of settings. But the book is very well structured, avoiding potential confusions here." Mathematical Reviews

  • Publicly Available
    Download PDF
  • Requires Authentication Unlicensed
    Licensed
  • Publicly Available
    Download PDF
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed
  • Requires Authentication Unlicensed
    Licensed

Publishing information
Pages and Images/Illustrations in book
eBook published on:
October 10, 2016
eBook ISBN:
9783110484380
Pages and Images/Illustrations in book
Front matter:
10
Main content:
518
Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/9783110484380/html?lang=en
Scroll to top button