Startseite Mathematik 19. Measurable set-valued maps. Measurable selections and measurable choice theorems
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

19. Measurable set-valued maps. Measurable selections and measurable choice theorems

  • Aram V. Arutyunov und Valeri Obukhovskii
Veröffentlichen auch Sie bei De Gruyter Brill
Convex and Set-Valued Analysis
Ein Kapitel aus dem Buch Convex and Set-Valued Analysis
© 2016 Walter de Gruyter GmbH, Berlin/Munich/Boston

© 2016 Walter de Gruyter GmbH, Berlin/Munich/Boston

Kapitel in diesem Buch

  1. Frontmatter I
  2. Preface V
  3. Contents VII
  4. Part I: Convex analysis
  5. 1. Convex sets and their properties 3
  6. 2. The convex hull of a set. The interior of convex sets 7
  7. 3. The affine hull of sets. The relative interior of convex sets 13
  8. 4. Separation theorems for convex sets 21
  9. 5. Convex functions 29
  10. 6. Closedness, boundedness, continuity, and Lipschitz property of convex functions 37
  11. 7. Conjugate functions 45
  12. 8. Support functions 51
  13. 9. Differentiability of convex functions and the subdifferential 59
  14. 10. Convex cones 69
  15. 11. A little more about convex cones in infinite-dimensional spaces 75
  16. 12. A problem of linear programming 79
  17. 13. More about convex sets and convex hulls 83
  18. Part II: Set-valued analysis
  19. 14. Introduction to the theory of topological and metric spaces 91
  20. 15. The Hausdorff metric and the distance between sets 95
  21. 16. Some fine properties of the Hausdorff metric 103
  22. 17. Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps 109
  23. 18. A base of topology of the space Hc(X) 121
  24. 19. Measurable set-valued maps. Measurable selections and measurable choice theorems 123
  25. 20. The superposition set-valued operator 129
  26. 21. The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations 135
  27. 22. Special selections of set-valued maps 141
  28. 23. Differential inclusions 149
  29. 24. Fixed points and coincidences of maps in metric spaces 155
  30. 25. Stability of coincidence points and properties of covering maps 165
  31. 26. Topological degree and fixed points of set-valued maps in Banach spaces 171
  32. 27. Existence results for differential inclusions via the fixed point method 187
  33. Notation 191
  34. Bibliography 195
  35. Index 199
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110460308-020/html?srsltid=AfmBOoqjkg_798xgMKjcY_UdLojJt8q3VNzp_wKbspGWTR2mXHjJ3BTW
Button zum nach oben scrollen