Startseite Simulation of Balancing Multi-Cavity Molds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation of Balancing Multi-Cavity Molds

  • H. Ghoneim
Veröffentlicht/Copyright: 9. April 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A finite element program is developed for simulating the non-isothermal flow of non-Newtonian liquids in a multi-cavity mold with convergent runners and gates of any arbitrary cross-sectional shape. The program is used to investigate the problem of balancing multi-cavity molds. Results of simulating an actual mold filling show that balancing can be achieved by using a straight runner together with convergent gates having successively increasing angles of convergence. In addition, a strategy for approximating those angles of convergence is suggested.


* Mail address: Dr. H.Ghoneim, Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, U.S.A.


References

1 Hieber, C.A., Kim, S.K., Kullar, P, Wei, T.; Wang, K. K.: Injection Molding Project Technical Manual No. TM-1, Cornell University (1982)Suche in Google Scholar

2 Lord, H. A., Williams, G.: Polym. Ebg. Sci. 15, p. 553 (1975)10.1002/pen.760150802Suche in Google Scholar

3 Kaneda, A., Saeki, J.,Aoki, M., Otsuki, K.; Watanabe, Y: Science and Technology of Polymer Processing MIT, Cambridge, (1979)Suche in Google Scholar

4 Ghoneim, FL; Pearson, D. S.; Matsuoka, S.: The Egyptian Society of Engineers 22, p. 76 (1983)Suche in Google Scholar

5 Castro, J. M., Macosko, C. W.: AICHE Journal 28, pp. 250–260 (1982)10.1002/aic.690280213Suche in Google Scholar

6 Tadmor, Z., Gogos, C. G.: Principles of Polymer Processing, Wiley, New York, (1979)Suche in Google Scholar

7 Kamal, R., Lafleur, P. G.: Polym. Eng. Sci., 22, 1066 (1982)10.1002/pen.760221704Suche in Google Scholar

8 Viriyayuthakovn, M., Caswell, B.: J. Non-Newtonian Fluid Mech. 6, p. 246 (1980)10.1016/0377-0257(80)80005-XSuche in Google Scholar

9 Jarzebski, A. B., Wilkinson, W. L.: J. Non-Newtonian Fluid Mech. 12 (1983)10.1016/0377-0257(83)80001-9Suche in Google Scholar

10 Ghoneim, H.: L Non-Newtonian Fluid Mech. 15, p. 375 (1984)10.1016/0377-0257(84)80019-1Suche in Google Scholar

11 Schmidt, L. R.: Polym. Eng. Sci. 14, p. 797 (1974)10.1002/pen.760141111Suche in Google Scholar

12 Zienkiewicz, O. C.:T he Finite Element Method, Addison-Wesley, (1978)Suche in Google Scholar

13 Li, Y. Y., Ghoneim, H., Chen, Y., David, J.: Journal of Thermal Stresses 6, p. 253 (1983)10.1080/01495738308942182Suche in Google Scholar

14 Wood, W. L.; Int. J. Num. Meth. Eng., 11, p. 1059 (1977)10.1002/nme.1620110703Suche in Google Scholar

15 Bellencourt, J. M., Zienkiewicz, O. C, Contin, G.: Int. J. Num. Meth. Eng. 17, p. 931 (1981)10.1002/nme.1620170609Suche in Google Scholar

16 Crouthamel, D. L., Thiefelder, W. G.; Poelzing, G. W.: B. T. L., TM83-52122-6 May, 1983 (Private Communication)Suche in Google Scholar

Published Online: 2022-04-09

© 1987 Hanser Publishers, Munich

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/217.870166/pdf
Button zum nach oben scrollen